
 1

VB .NET Language in a Nutshell

Steven Roman
Ron Petrusha
Paul Lomax
Publisher: O'Reilly
First Edition August 2001
ISBN: 0-596-00092-8, 654 pages

Need to make sense of the many changes to Visual Basic for the new .NET platform? VB .NET
Language in a Nutshell introduces the important aspects of the language and explains the .NET
framework. An alphabetical reference covers the functions, statements, directives, objects, and object
members that make up the VB .NET language. To ease the transition, each language element
includes a "VB .NET/VB 6 Differences" section.

 2

Preface.. 14
Why Another VB Book? ... 26
Who This Book Is For... 26

Readers New to Visual Basic... 26
VB and VBScript Developers New to VB .NET.. 26
Existing VB .NET Developers .. 27

How This Book Is Structured .. 27
The Format of the Language Reference ... 28

Conventions Used in This Book.. 29
How to Contact Us .. 30
Acknowledgments ... 30

Part I: The Basics .. 33
Chapter 1. Introduction ... 33

1.1 Why VB .NET? ... 34
1.2 What Is VB .NET? .. 37

1.2.1 Object Orientation... 37
1.2.2 A Common Type System .. 38
1.2.3 Access to System Services: The Framework Class Library 39
1.2.4 A Common Runtime Environment .. 41

1.3 What Can You Do with VB .NET?... 42
Chapter 2. Variables and Data Types.. 43

2.1 Variables ... 43
2.1.1 Variable Scope .. 43
2.1.2 Variable Lifetime .. 45

2.2 Declaring Variables and Constants... 47
2.3 Data Types ... 48

2.3.1 Value and Reference Types ... 49
2.3.2 VB Data Types: A Summary ... 51
2.3.3 Simple Data Types in Visual Basic.. 54
2.3.4 Data Type Conversion ... 62

2.4 Arrays... 64
2.4.1 Definition of Array ... 64
2.4.2 Dimension of an Array... 64
2.4.3 Size of an Array ... 64
2.4.4 Arrays in VB .NET .. 65

2.5 Object Variables and Their Binding .. 67
2.5.1 Late Binding Versus Early Binding .. 68

2.6 The Collection Object ... 69
2.7 Parameters and Arguments... 70

2.7.1 Passing Arguments ... 70
2.7.2 Passing Objects .. 71
2.7.3 Optional Arguments.. 73
2.7.4 ParamArray .. 73

Chapter 3. Introduction to Object-Oriented Programming .. 75
3.1 Why Learn Object-Oriented Techniques? .. 75

 3

3.2 Principles of Object-Oriented Programming ..75
3.2.1 Abstraction ...75
3.2.2 Encapsulation ..76
3.2.3 Interfaces ..77

3.3 Classes and Objects ..79
3.3.1 Class Modules in VB .NET ...79
3.3.2 Class Members ..79
3.3.3 The Public Interface of a VB .NET Class ...81
3.3.4 Objects ...81
3.3.5 Properties ..82
3.3.6 Instance and Shared Members...83
3.3.7 Class Constructors...84
3.3.8 Finalize, Dispose, and Garbage Collection85

3.4 Inheritance ...86
3.4.1 Permission to Inherit ..88
3.4.2 Overriding ...88
3.4.3 Rules of Inheritance..89
3.4.4 MyBase, MyClass, and Me ..89

3.5 Interfaces, Abstract Members, and Classes ..91
3.5.1 Interfaces Revisited ..93

3.6 Polymorphism and Overloading ...93
3.6.1 Overloading ..93
3.6.2 Polymorphism ..94

3.7 Scope and Accessibility in Class Modules ...95
Chapter 4. The .NET Framework: General Concepts..97

4.1 Namespaces ...97
4.2 Common Language Runtime (CLR), Managed Code, and Managed
Data...97
4.3 Managed Execution ...98
4.4 Assemblies ..98
4.5 Assemblies and VB .NET ...100

Chapter 5. The .NET Framework Class Library..103
5.1 The System Namespace ..104

5.1.1 Data Type Conversion ..104
5.1.2 The Array Class...105
5.1.3 The Math Class..106
5.1.4 The String Class ...107

5.2 Other Namespaces ..108
5.2.1 System.Collections ..110
5.2.2 System.Data ..110
5.2.3 System.IO ...111
5.2.4 System.Text.RegularExpressions ..111
5.2.5 System.Windows.Forms ..113

Chapter 6. Delegates and Events ...115
6.1 Delegates ..115

6.1.1 Using a Delegate to Call a Method ..116
6.1.2 Using a Delegate as a Function Pointer ..117

 4

6.2 Events and Event Binding .. 118
6.2.1 Control-Related Events ... 119
6.2.2 WithEvents ... 119
6.2.3 AddHandler .. 120

Chapter 7. Error Handling in VB .NET ... 123
7.1 Error Detection and Error Handling.. 123
7.2 Runtime Error Handling .. 124

7.2.1 Unstructured Error Handling ... 124
7.2.2 Structured Exception Handling .. 127

7.3 Dealing with Logical Errors .. 131
7.3.1 Detecting Logical Errors.. 131
7.3.2 Where to Handle a Logical Error ... 132

7.4 Error Constants .. 133
Part II: Reference .. 135
Chapter 8. The Language Reference ... 135

#Const Directive .. 137
#If...Then...#Else Directive .. 139
#Region...#End Region Directive ... 141
Abs Function .. 141
Acos Function .. 143
AddHandler Statement .. 143
AddressOf Operator .. 144
AppActivate Procedure .. 145
Application Class.. 147
Application.CompanyName Property ... 148
Application.DoEvents Method ... 149
Application.ExecutablePath Property ... 150
Application.ProductName Property... 151
Application.ProductVersion Property ... 152
Array Class ... 152
Array.BinarySearch Method .. 153
Array.Copy Method ... 156
Array.IndexOf Method ... 158
Array.LastIndexOf Method... 159
Array.Reverse Method ... 161
Array.Sort Method... 162
Asc, AscW Functions .. 164
Asin Function... 166
Atan Function .. 167
See Also .. 168
Atan2 Function ... 168
Beep Procedure .. 169
Call Statement .. 170
CallByName Function ... 172
CBool Function.. 174
CByte Function ... 175
CChar Function ... 176

 5

CDate Function ...177
CDbl Function ..178
CDec Function ...179
Ceiling Function ..180
ChDir Procedure ...181
ChDrive Procedure...182
Choose Function ...184
Chr, ChrW Functions...185
CInt Function ...187
Class Statement ...188
Clipboard Class ...190
Clipboard.GetDataObject Method ..190
Clipboard.SetDataObject Method ..192
CLng Function..192
CObj Function ..194
Collection Class...195
Collection.Add Method ...198
Collection.Count Property ...199
Collection.Item Method ...200
Collection.Remove Method...202
ColorDialog Class ...203
Command Function ...205
Const Statement ..207
Cos Function ..208
Cosh Function ..209
CreateObject Function ...210
CShort Function ..212
CSng Function ...214
CStr Function ...215
CType Function ...216
CurDir Function...218
DateAdd Function...219
DateDiff Function ...221
DatePart Function ..224
DateSerial Function...226
DateString Property ..228
DateValue Function ...229
Day Function ..230
DDB Function...231
Debug Class ...233
Debug.Assert Method ...234
Debug.AutoFlush Property ...235
Debug.Close Method...235
Debug.Flush Method ...236
Debug.Indent Method ..236
Debug.IndentLevel Property..237
Debug.IndentSize Property..237

 6

Debug.Listeners Property... 238
Debug.Unindent Method ... 238
Debug.Write Method .. 239
Debug.WriteIf Method ... 240
Debug.WriteLine Method .. 241
Debug.WriteLineIf Method ... 242
Declare Statement .. 243
Delegate Statement ... 248
DeleteSetting Procedure... 249
Dim Statement ... 251
Dir Function ... 256
Directory Class ... 259
Directory.CreateDirectory Method .. 260
Directory.Delete Method... 261
Directory.Exists Method.. 262
Directory.GetCreationTime Method.. 263
Directory.GetDirectories Method ... 263
Directory.GetDirectoryRoot Method ... 265
Directory.GetFiles Method.. 266
Directory.GetFileSystemEntries Method... 267
Directory.GetLogicalDrives Method .. 268
Directory.GetParent Method ... 269
Directory.Move Method ... 270
Do...Loop Statement.. 271
E Field .. 274
End Statement .. 274
Enum Statement.. 276
Environ Function .. 278
EOF Function ... 280
Erase Statement .. 281
Erl Property .. 282
Err Object ... 283
Err.Clear Method.. 284
Err.Description Property ... 285
Err.GetException Method.. 286
Err.HelpContext Property ... 288
Err.HelpFile Property .. 289
Err.LastDLLError Property .. 290
Err.Number Property.. 291
Err.Raise Method ... 293
Err.Source Property .. 295
Error Statement ... 295
ErrorToString Function .. 296
Event Statement .. 297
Exception Class .. 299
Exit Statement.. 302
Exp Function.. 303

 7

File Class ...304
File.Exists Method ..305
FileAttr Function ...306
FileClose Procedure ...307
FileCopy Procedure..308
FileDateTime Function..309
FileGet, FileGetObject Procedures...310
FileLen Function..312
FileOpen Procedure ...313
FilePut, FilePutObject Procedures..316
FileWidth Procedure ..318
Filter Function..319
Fix Function ..321
Floor Function..322
FontDialog Class ...323
For...Next Statement..325
For Each...Next Statement...327
Format Function ...329
FormatCurrency, FormatNumber, FormatPercent Functions..............341
FormatDateTime Function ..343
FreeFile Function ..345
Friend Keyword...345
Function Statement...346
FV Function...350
Get Statement...352
GetAllSettings Function ...353
GetAllSettings Function ...355
GetAttr Function ...357
GetObject Function..359
GetSetting Function ..361
GetTimer Function ...363
GoTo Statement ...364
Handles Keyword ...365
Hashtable Class ..366
Hashtable.Add Method...368
Hashtable.Clear Method ..369
Hashtable.ContainsKey Method..370
Hashtable.ContainsValue Method ..371
Hashtable.CopyTo Method..371
Hashtable.Count Property ..372
Hashtable.Item Property...373
Hashtable.Keys Property...374
Hashtable.Remove Method ..375
Hashtable.Values Property ...376
Hex Function ..377
Hour Function ..378
IDataObject Interface ..379

 8

IDataObject.GetData Method ... 379
IDataObject.GetDataPresent Method .. 381
IDataObject.GetFormats Method .. 383
IEEERemainder Function .. 384
If...Then...Else Statement ... 384
IIf Function .. 389
Implements Keyword... 390
Implements Statement ... 391
Imports Statement ... 393
Inherits Statement.. 394
Input Procedure ... 395
InputBox Function... 397
InputString Function .. 399
InStr Function ... 400
InStrRev Function ... 402
Int Function ... 403
Interface Statement ... 404
IPmt Function.. 407
IRR Function .. 410
Is Operator... 411
IsArray Function .. 412
IsDate Function .. 413
IsDBNull Function .. 414
IsError Function ... 415
IsNothing Function.. 416
IsNumeric Function... 417
IsReference Function ... 417
Join Function ... 419
Kill Procedure .. 420
LBound Function .. 421
LCase Function ... 423
Left Function.. 423
Len Function .. 425
Like Operator .. 426
LineInput Function .. 427
Loc Function .. 429
Lock Procedure ... 430
LOF Function ... 431
Log Function .. 432
Log10 Function ... 434
LTrim Function.. 435
Max Function ... 436
Me Operator... 437
Mid Function .. 438
Mid Statement .. 440
Min Function .. 441
Minute Function.. 442

 9

MIRR Function ...443
MkDir Procedure ...444
Mod Operator...445
Module...End Module Statement..446
Month Function ...447
MonthName Function..448
MsgBox Function ..449
MyBase Keyword ..452
MyClass Keyword ...453
Namespace Statement...454
Now Property ...455
NPer Function ..456
NPV Function..458
Oct Function ...459
On Error Statement...460
OpenFileDialog Class ..463
Option Compare Statement ...466
Option Explicit Statement...466
Option Strict Statement ..467
Partition Function ...469
Pi Field ..471
Pmt Function..472
Pow Function..473
PPmt Function ...474
Print, PrintLine Procedures...476
Private Statement..478
Property Statement...480
Protected Keyword ..485
Public Statement ..485
PV Function...488
QBColor Function ...490
Queue Class ...491
Queue.Clear Method ...493
Queue.Contains Method ..493
Queue.CopyTo Method...494
Queue.Count Property ...495
Queue.Dequeue Method..496
Queue.Enqueue Method ..497
Queue.Peek Method ..497
Queue.ToArray Method..498
RaiseEvent Statement..498
Randomize Procedure...500
Rate Function...501
ReDim Statement ..503
Rem Statement...505
Rename Procedure ..506
Replace Function ..507

 10

Reset Procedure ... 509
Resume Statement ... 510
Return Statement.. 511
RGB Function... 513
Right Function... 514
RmDir Procedure.. 515
Rnd Function ... 517
Round Function .. 519
RTrim Function ... 520
SaveFileDialog Class .. 521
SaveSetting Procedure.. 523
ScriptEngine Function .. 524
ScriptEngineBuildVersion Function ... 525
ScriptEngineMajorVersion Function.. 526
ScriptEngineMinorVersion Function.. 527
Return Value.. 527
Second Function... 528
Seek Function ... 528
Seek Procedure .. 529
Select Case Statement .. 530
Send, SendWait Methods ... 532
Set Statement .. 535
SetAttr Procedure.. 537
Shadows Keyword ... 539
Shell Function ... 541
Sign Function .. 544
Sin Function... 545
Sinh Function .. 546
SLN Function ... 547
Space Function ... 548
Spc Function .. 549
Split Function .. 550
Sqrt Function... 551
Stack Class... 552
Stack.Clear Method .. 554
Stack.Contains Method ... 554
Stack.CopyTo Method.. 555
Stack.Count Property... 556
Stack.Peek Method ... 557
Stack.Pop Method ... 557
Stack.Push Method ... 558
Stack.ToArray Method ... 559
Static Statement.. 559
Stop Statement .. 562
Str Function ... 563
StrComp Function.. 564
StrConv Function ... 565

 11

StrDup Function..567
StrReverse Function..568
Structure...End Structure Statement...568
Sub Statement ..570
Switch Function ..574
SYD Function ...575
SyncLock Statement ...576
SystemTypeName Function ...577
Tab Function ..579
Tan Function ..580
Tanh Function..581
Throw Statement ...582
TimeOfDay Property ...582
Timer Property ..583
TimeSerial Function ..584
TimeString Property..585
TimeValue Function...586
Today Property..587
Trim Function...588
Try...Catch...Finally Statement ..589
TypeName Function ..591
UBound Function ..593
UCase Function ...594
Unlock Procedure ...594
Val Function ...596
ValDec Function ..597
VarType Function ...598
VbTypeName Function ...599
Weekday Function ...601
WeekdayName Function..602
While...End While Statement ..604
With Statement...605
WithEvents Keyword...606
Write Procedure ..608
WriteLine Procedure..609
Year Function...610

Part III: Appendixes ...613
Appendix A. What's New and Different in VB .NET ...615

A.1 Language Changes for VB .NET ...615
A.1.1 Data Types ...615
A.1.2 Variables and Their Declaration ...616
A.1.3 Boolean and Bitwise Operators ..619
A.1.4 Changes Related to Procedures ...620
A.1.5 Miscellaneous Language Changes ...621

A.2 Changes to Programming Elements ...622
A.2.1 Constants ..622
A.2.2 String Functions ...623

 12

A.2.3 Emptiness ... 623
A.2.4 Graphical Functionality.. 623
A.2.5 Mathematical Functionality.. 623
A.2.6 Diagnostics... 623
A.2.7 Miscellaneous .. 624

A.3 Obsolete Programming Elements.. 624
A.4 Structured Exception Handling .. 627
A.5 Changes in Object-Orientation .. 627

A.5.1 Inheritance... 628
A.5.2 Overloading ... 628
A.5.3 Object Creation .. 628
A.5.4 Properties ... 629

Appendix B. Language Elements by Category... 631
B.1 Array Handling.. 631
B.2 Clipboard .. 631
B.3 Collection Objects ... 632
B.4 Common Dialogs ... 632
B.5 Conditional Compilation.. 632
B.6 Conversion ... 633

B.6.1 Data Type Conversion ... 633
B.6.2 Other Conversion .. 633

B.7 Date and Time .. 633
B.8 Debugging .. 634
B.9 Declaration... 634
B.10 Error Handling.. 635
B.11 Filesystem.. 635
B.12 Financial ... 636
B.13 IDataObject Interface ... 636
B.14 Information ... 637
B.15 Input/Output .. 637
B.16 Integrated Development Environment... 638
B.17 Interaction ... 638
B.18 Mathematics.. 638
B.19 Program Structure and Flow .. 639
B.20 Programming .. 640

B.20.1 Object Programming ... 640
B.20.2 Miscellaneous Programming ... 640

B.21 Registry .. 640
B.22 String Manipulation .. 641

Appendix C. Operators ... 643
C.1 Arithmetic Operators ... 643
C.2 Assignment Operators... 644
C.3 Concatenation Operators ... 646
C.4 Comparison Operators .. 646

C.4.1 The Is Operator.. 647
C.4.2 The Like Operator ... 647

C.5 Logical and Bitwise Operators.. 647

 13

Eqv and Imp..650
C.6 Operator Precedence ..650

Appendix D. Constants and Enumerations..653
D.1 Visual Basic Intrinsic Constants...653
D.2 ControlChars Class..656
D.3 Visual Basic Enumerations ...656

D.3.1 AppWinStyle Enumeration ...656
D.3.2 CallType Enumeration..656
D.3.3 CompareMethod Enumeration..656
D.3.4 DateFormat Enumeration ...657
D.3.5 DateInterval Enumeration ...657
D.3.6 DueDate Enumeration ...657
D.3.7 FileAttribute Enumeration ..657
D.3.8 FirstDayOfWeek Enumeration ..657
D.3.9 FirstWeekOfYear Enumeration ...658
D.3.10 MsgBoxResult Enumeration ..658
D.3.11 MsgBoxStyle Enumeration ..658
D.3.12 OpenAccess Enumeration ..658
D.3.13 OpenMode Enumeration ...659
D.3.14 OpenModeTypes Enumeration ...659
D.3.15 OpenShare Enumeration..659
D.3.16 PrintFlags Enumeration ..659
D.3.17 TriState Enumeration ..659
D.3.18 VariantType Enumeration ..659
D.3.19 VbStrConv Enumeration...660

Appendix E. The VB .NET Command-Line Compiler ..661
E.1 Compiler Basics ..661
E.2 Command-Line Switches...661

E.2.1 Output Filename and File Type...661
E.2.2 Input Files ...662
E.2.3 Resources..662
E.2.4 Code Generation...663
E.2.5 Debugging...663
E.2.6 Errors and Warnings ...663
E.2.7 Language ...663
E.2.8 Miscellaneous...664
E.2.9 Advanced...664

E.3 Using a Response File ..665
Appendix F. VB 6 Language Elements Not Supported by VB .NET667
Colophon ...670

 14

 VB .NET Language in a Nutshell

Preface
 Why Another VB Book?
 Who This Book Is For
 How This Book Is Structured
 Conventions Used in This Book
 How to Contact Us
 Acknowledgments

I: The Basics

1. Introduction
 1.1 Why VB .NET?
 1.2 What Is VB .NET?
 1.3 What Can You Do with VB .NET?

2. Variables and Data Types
 2.1 Variables
 2.2 Declaring Variables and Constants
 2.3 Data Types
 2.4 Arrays
 2.5 Object Variables and Their Binding
 2.6 The Collection Object
 2.7 Parameters and Arguments

3. Introduction to Object-Oriented Programming
 3.1 Why Learn Object-Oriented Techniques?
 3.2 Principles of Object-Oriented Programming
 3.3 Classes and Objects
 3.4 Inheritance
 3.5 Interfaces, Abstract Members, and Classes
 3.6 Polymorphism and Overloading
 3.7 Scope and Accessibility in Class Modules

4. The .NET Framework: General Concepts
 4.1 Namespaces
 4.2 Common Language Runtime (CLR), Managed Code, and Managed Data
 4.3 Managed Execution
 4.4 Assemblies
 4.5 Assemblies and VB .NET

5. The .NET Framework Class Library
 5.1 The System Namespace
 5.2 Other Namespaces

6. Delegates and Events
 6.1 Delegates
 6.2 Events and Event Binding

 15

7. Error Handling in VB .NET
 7.1 Error Detection and Error Handling
 7.2 Runtime Error Handling
 7.3 Dealing with Logical Errors
 7.4 Error Constants

II: Reference

8. The Language Reference
 #Const Directive
 #If...Then...#Else Directive
 #Region...#End Region Directive
 Abs Function
 Acos Function
 AddHandler Statement
 AddressOf Operator
 AppActivate Procedure
 Application Class
 Application.CompanyName Property
 Application.DoEvents Method
 Application.ExecutablePath Property
 Application.ProductName Property
 Application.ProductVersion Property
 Array Class
 Array.BinarySearch Method
 Array.Copy Method
 Array.IndexOf Method
 Array.LastIndexOf Method
 Array.Reverse Method
 Array.Sort Method
 Asc, AscW Functions
 Asin Function
 Atan Function
 Atan2 Function
 Beep Procedure
 Call Statement
 CallByName Function
 CBool Function
 CByte Function
 CChar Function
 CDate Function
 CDbl Function
 CDec Function
 Ceiling Function
 ChDir Procedure
 ChDrive Procedure
 Choose Function
 Chr, ChrW Functions
 CInt Function
 Class Statement

 16

 Clipboard Class
 Clipboard.GetDataObject Method
 Clipboard.SetDataObject Method
 CLng Function
 CObj Function
 Collection Class
 Collection.Add Method
 Collection.Count Property
 Collection.Item Method
 Collection.Remove Method
 ColorDialog Class
 Command Function
 Const Statement
 Cos Function
 Cosh Function
 CreateObject Function
 CShort Function
 CSng Function
 CStr Function
 CType Function
 CurDir Function
 DateAdd Function
 DateDiff Function
 DatePart Function
 DateSerial Function
 DateString Property
 DateValue Function
 Day Function
 DDB Function
 Debug Class
 Debug.Assert Method
 Debug.AutoFlush Property
 Debug.Close Method
 Debug.Flush Method
 Debug.Indent Method
 Debug.IndentLevel Property
 Debug.IndentSize Property
 Debug.Listeners Property
 Debug.Unindent Method
 Debug.Write Method
 Debug.WriteIf Method
 Debug.WriteLine Method
 Debug.WriteLineIf Method
 Declare Statement
 Delegate Statement
 DeleteSetting Procedure
 Dim Statement
 Dir Function
 Directory Class
 Directory.CreateDirectory Method

 17

 Directory.Delete Method
 Directory.Exists Method
 Directory.GetCreationTime Method
 Directory.GetDirectories Method
 Directory.GetDirectoryRoot Method
 Directory.GetFiles Method
 Directory.GetFileSystemEntries Method
 Directory.GetLogicalDrives Method
 Directory.GetParent Method
 Directory.Move Method
 Do...Loop Statement
 E Field
 End Statement
 Enum Statement
 Environ Function
 EOF Function
 Erase Statement
 Erl Property
 Err Object
 Err.Clear Method
 Err.Description Property
 Err.GetException Method
 Err.HelpContext Property
 Err.HelpFile Property
 Err.LastDLLError Property
 Err.Number Property
 Err.Raise Method
 Err.Source Property
 Error Statement
 ErrorToString Function
 Event Statement
 Exception Class
 Exit Statement
 Exp Function
 File Class
 File.Exists Method
 FileAttr Function
 FileClose Procedure
 FileCopy Procedure
 FileDateTime Function
 FileGet, FileGetObject Procedures
 FileLen Function
 FileOpen Procedure
 FilePut, FilePutObject Procedures
 FileWidth Procedure
 Filter Function
 Fix Function
 Floor Function
 FontDialog Class
 For...Next Statement

 18

 For Each...Next Statement
 Format Function
 FormatCurrency, FormatNumber, FormatPercent Functions
 FormatDateTime Function
 FreeFile Function
 Friend Keyword
 Function Statement
 FV Function
 Get Statement
 GetAllSettings Function
 GetAttr Function
 GetChar Function
 GetObject Function
 GetSetting Function
 GetTimer Function
 GoTo Statement
 Handles Keyword
 Hashtable Class
 Hashtable.Add Method
 Hashtable.Clear Method
 Hashtable.ContainsKey Method
 Hashtable.ContainsValue Method
 Hashtable.CopyTo Method
 Hashtable.Count Property
 Hashtable.Item Property
 Hashtable.Keys Property
 Hashtable.Remove Method
 Hashtable.Values Property
 Hex Function
 Hour Function
 IDataObject Interface
 IDataObject.GetData Method
 IDataObject.GetDataPresent Method
 IDataObject.GetFormats Method
 IEEERemainder Function
 If...Then...Else Statement
 IIf Function
 Implements Keyword
 Implements Statement
 Imports Statement
 Inherits Statement
 Input Procedure
 InputBox Function
 InputString Function
 InStr Function
 InStrRev Function
 Int Function
 Interface Statement
 IPmt Function
 IRR Function

 19

 Is Operator
 IsArray Function
 IsDate Function
 IsDBNull Function
 IsError Function
 IsNothing Function
 IsNumeric Function
 IsReference Function
 Join Function
 Kill Procedure
 LBound Function
 LCase Function
 Left Function
 Len Function
 Like Operator
 LineInput Function
 Loc Function
 Lock Procedure
 LOF Function
 Log Function
 Log10 Function
 LTrim Function
 Max Function
 Me Operator
 Mid Function
 Mid Statement
 Min Function
 Minute Function
 MIRR Function
 MkDir Procedure
 Mod Operator
 Module...End Module Statement
 Month Function
 MonthName Function
 MsgBox Function
 MyBase Keyword
 MyClass Keyword
 Namespace Statement
 Now Property
 NPer Function
 NPV Function
 Oct Function
 On Error Statement
 OpenFileDialog Class
 Option Compare Statement
 Option Explicit Statement
 Option Strict Statement
 Partition Function
 Pi Field
 Pmt Function

 20

 Pow Function
 PPmt Function
 Print, PrintLine Procedures
 Private Statement
 Property Statement
 Protected Keyword
 Public Statement
 PV Function
 QBColor Function
 Queue Class
 Queue.Clear Method
 Queue.Contains Method
 Queue.CopyTo Method
 Queue.Count Property
 Queue.Dequeue Method
 Queue.Enqueue Method
 Queue.Peek Method
 Queue.ToArray Method
 RaiseEvent Statement
 Randomize Procedure
 Rate Function
 ReDim Statement
 Rem Statement
 Rename Procedure
 Replace Function
 Reset Procedure
 Resume Statement
 Return Statement
 RGB Function
 Right Function
 RmDir Procedure
 Rnd Function
 Round Function
 RTrim Function
 SaveFileDialog Class
 SaveSetting Procedure
 ScriptEngine Function
 ScriptEngineBuildVersion Function
 ScriptEngineMajorVersion Function
 ScriptEngineMinorVersion Function
 Second Function
 Seek Function
 Seek Procedure
 Select Case Statement
 Send, SendWait Methods
 Set Statement
 SetAttr Procedure
 Shadows Keyword
 Shell Function
 Sign Function

 21

 Sin Function
 Sinh Function
 SLN Function
 Space Function
 Spc Function
 Split Function
 Sqrt Function
 Stack Class
 Stack.Clear Method
 Stack.Contains Method
 Stack.CopyTo Method
 Stack.Count Property
 Stack.Peek Method
 Stack.Pop Method
 Stack.Push Method
 Stack.ToArray Method
 Static Statement
 Stop Statement
 Str Function
 StrComp Function
 StrConv Function
 StrDup Function
 StrReverse Function
 Structure...End Structure Statement
 Sub Statement
 Switch Function
 SYD Function
 SyncLock Statement
 SystemTypeName Function
 Tab Function
 Tan Function
 Tanh Function
 Throw Statement
 TimeOfDay Property
 Timer Property
 TimeSerial Function
 TimeString Property
 TimeValue Function
 Today Property
 Trim Function
 Try...Catch...Finally Statement
 TypeName Function
 UBound Function
 UCase Function
 Unlock Procedure
 Val Function
 ValDec Function
 VarType Function
 VbTypeName Function
 Weekday Function

 22

 WeekdayName Function
 While...End While Statement
 With Statement
 WithEvents Keyword
 Write Procedure
 WriteLine Procedure
 Year Function
 8. The Language Reference

III: Appendixes

A. What's New and Different in VB .NET
 A.1 Language Changes for VB .NET
 A.2 Changes to Programming Elements
 A.3 Obsolete Programming Elements
 A.4 Structured Exception Handling
 A.5 Changes in Object-Orientation

B. Language Elements by Category
 B.1 Array Handling
 B.2 Clipboard
 B.3 Collection Objects
 B.4 Common Dialogs
 B.5 Conditional Compilation
 B.6 Conversion
 B.7 Date and Time
 B.8 Debugging
 B.9 Declaration
 B.10 Error Handling
 B.11 Filesystem
 B.12 Financial
 B.13 IDataObject Interface
 B.14 Information
 B.15 Input/Output
 B.16 Integrated Development Environment
 B.17 Interaction
 B.18 Mathematics
 B.19 Program Structure and Flow
 B.20 Programming
 B.21 Registry
 B.22 String Manipulation

C. Operators
 C.1 Arithmetic Operators
 C.2 Assignment Operators
 C.3 Concatenation Operators
 C.4 Comparison Operators
 C.5 Logical and Bitwise Operators
 C.6 Operator Precedence

 23

D. Constants and Enumerations
 D.1 Visual Basic Intrinsic Constants
 D.2 ControlChars Class
 D.3 Visual Basic Enumerations

E. The VB .NET Command-Line Compiler
 E.1 Compiler Basics
 E.2 Command-Line Switches
 E.3 Using a Response File

F. VB 6 Language Elements Not Supported by VB .NET

Colophon

 24

 25

Preface

Microsoft Visual Basic began its life just over ten years ago as a kind of amalgamation of Microsoft's
QBasic programming language and a graphical interface design program developed in part by Alan
Cooper. Since then, it has become by far the most popular programming language in the world, with
an installed base that is estimated at five to eight million developers worldwide.

The tenth anniversary of Visual Basic coincides with the introduction of Microsoft's new .NET platform,
and with a totally revised and revamped version of VB named Visual Basic .NET. The language has
been streamlined and modernized, and many old "compatibility" elements have been dropped from the
language, while other language elements that were implemented as statements are now either
functions or procedures.

In addition, many of you will be glad to hear that Visual Basic is now a fully object-oriented
programming language, with the inclusion of the long sought-after class inheritance, as well as other
OOP features.

We suspect that many of you will greet with mixed emotions, as do we, the fact that Microsoft's
Component Object Model (COM), the technology that was at the core of Visual Basic since the release
of Version 4.0, has been abandoned in favor of the .NET platform. On the one hand, we find this to be
a great relief, because COM can be so complex and confusing. On the other hand, we find this
somewhat irritating, because we have invested so much time and effort in learning and using COM.
Finally, we find this change somewhat frightening; who knows what pitfalls await us as we become
more familiar with this new technology?

The best news of all is that, whereas in the past, Visual Basic served as a "wrapper" that simplified
and hid much of the complexity of Windows and the Windows operating system, at long last Visual
Basic is an "equal player" in the .NET Framework; Visual Basic programmers have full and easy
access to the features of the .NET platform, just as Visual C++ and C# programmers do.

The extensive changes to the language and the introduction of the .NET platform make a reference
guide to the Visual Basic language more essential than ever. At the same time, they make it easy to
delineate this book's subject matter. This is a book that focuses on the language elements of Visual
Basic .NET?on its statements, functions, procedures, directives, and objects (notably the Err and
Collection objects).

While it's important to emphasize that this book focuses on the Visual Basic language components for
the .NET platform, it's also important to emphasize what this book is not:

• It is not a reference guide to Visual Basic for Applications (VBA), the programming language
used in all of the major applications in the Microsoft Office suite, as well as in dozens of other
third-party applications. As you probably know, VBA is the programming language in previous
versions of Visual Basic and in the major Office applications. However, VBA is not the
programming language for VB .NET. Indeed, until VB .NET is incorporated into a release of
Microsoft Office for .NET, the two languages will differ significantly.

• It is not a reference guide to the .NET Base Class Library (the basic set of services provided
by the .NET Framework) or to the .NET Framework Class Library (which consists of the Base
Class Library supplemented by the application services provided by the .NET Framework). To
be sure, the Framework Class Library is discussed in these pages, and a number of its
classes and their members are documented in the book's reference section. But that
documentation just scratches the surface; the Framework Class Library consists of over 90
namespaces (one of which, incidentally, is Microsoft.VisualBasic, the namespace that defines
the objects of the Visual Basic language), several thousand types (classes, interfaces,
delegates, and enumerations), and an enormous number of members. In selecting the .NET
Framework classes to document in this book, we've tried to focus on .NET elements that
replace commonly used features in previous versions of Visual Basic, as well as on .NET
elements that expand and enhance the functionality of existing Visual Basic .NET elements in
significant ways.

 26

• It is not a guide to developing applications or components using Visual Basic .NET. In
documenting the language, we'll show you some simple code fragments that illustrate the
relevant issues and show you how a language element works. On the other hand, we won't
show you, for example, how to use the Windows Forms package to build a Windows
application, how to develop a web application using ASP.NET, or how to implement a web
service.

Why Another VB Book?

There are literally hundreds of books lining the shelves on how to program using Visual Basic, and
they will no doubt be joined by a flood of books on how to program in VB .NET. The majority of these
books assume that you're a complete novice and slowly introduce you to such concepts as variables,
arrays, and looping structures.

This is a different kind of book, however. It is a detailed, professional reference to the VB .NET
language?a reference that you can turn to if you want to jog your memory about a particular language
element or a particular parameter. You're also looking for a reference that you can turn to when you're
having difficulty programming and need to review the rules for using a particular language element, or
when you want to check that there isn't some "gotcha" you've overlooked that is associated with a
particular language element.

In addition, we believe this book will serve as the main reference for VB 6 programmers who are
upgrading to VB .NET. To this end, we have devoted considerable space to the extensive language
differences between VB 6 and VB .NET. For each relevant language entry, we have included a
"VB .NET/VB 6 Differences" section that details the differences in the operation of the language
element between VB 6 and VB .NET.

Who This Book Is For

Just like any reference (such as a dictionary), this book will be useful to many types of readers:

• Developers who have used previous versions of Visual Basic
• Developers who are new to Visual Basic, but who have been developing application in other

programming languages, such as C++
• Those who are learning VB.NET as their first language and would like to have a definitive

language reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the first
half of the book, which discusses many important areas of programming under VB .NET, including
variables, datatypes, the basic principles of object-oriented programming, and error-handling
techniques.

VB and VBScript Developers New to VB .NET

Some critics have argued that VB .NET is an entirely new language. While we wouldn't go quite that
far, we do agree not only that the language changes have been extensive, but that the new .NET
platform will result in a paradigm shift that affects the way we think about application development. So
in many ways, as a VB or VBScript developer new to VB .NET, you may find yourself in a position
similar to that of a developer who is new to all forms of VB .NET.

However, one of our goals was to develop a book that will ease the thorny transition to VB .NET from
earlier versions of VB. In particular, the first seven chapters of the book offer a rapid introduction to
VB .NET and its new features. Appendix A discusses many of the major language changes between
VB 6 and VB .NET, while Appendix E lists VB 6 language elements that are no longer supported in

 27

VB .NET. Finally, if version differences exist in a language element, we include a "VB .NET/VB 6
Differences" section that shows you precisely how the behavior of that element has changed from VB
6 to VB .NET.

Existing VB .NET Developers

As we write this book, VB .Net is brand new (Beta 2 of the .NET Framework has been released), so
existing VB .NET developers are a rarity. But we believe that, given the strengths of VB.NET, this
situation will change quickly. As you continue to develop in VB.NET, we believe you will find that
VB .NET Language in a Nutshell retains its value. As an experienced developer, you can delve into
the book to get the lowdown on a language element that interests you or that seems to be behaving
erratically or unexpectedly in your code. Appendix B details all of the language elements by category
to help you find the relevant entry in the language reference more easily.

How This Book Is Structured

VB .NET Language in a Nutshell is divided into three parts. The first part of the book, The Basics, is an
introduction to the main features and concepts of Visual Basic programming. Given the newness of
VB .NET, even seasoned VB professionals should find items of interest here. If you're new to VB, this
part of the book is essential reading. It's divided into the following chapters:

Chapter 1

In this chapter, you'll see how Visual Basic has evolved into the VB .NET language of today
and get some sense of how and why VB .NET is different from previous versions of Visual
Basic.

Chapter 2

This chapter looks at the standard Visual Basic data types and how you use them. Behind the
scenes, Visual Basic takes advantage of the .NET Framework's common type system, so the
chapter also examines the .NET data types and the way in which VB wraps these data types.

Chapter 3

With the release of its .NET version, Visual Basic finally becomes a fully object-oriented
programming language. This chapter discusses the basic concepts of object-orientated
programming and shows how you implement VB's object-oriented features in your
programming.

Chapter 4

This chapter surveys some of the new features of the .NET Framework that most impact the
VB developer. These include namespaces, the Common Language Runtime (CLR), and
assemblies.

Chapter 5

The .NET Framework Class Library replaces portions of the Win32 API, as well as many of
the individual object models that VB programmers have worked with over the past five years,
with a single class library. This chapter offers a very fast-paced overview of the Framework
Class Library and some of its features.

Chapter 6

 28

While handling events was more or less automatic in previous versions of VB and even in
VBScript, you typically have to "wire" events to your code in VB .NET. This chapter shows
how to do that.

Chapter 7

Visual Basic now offers two techniques for error handling. The first, which uses the On Error
statement, is termed "unstructured error handling" and is a traditional part of VB. The second,
which uses the Try...Catch...Finally construct, is termed "structured exception
handling" and is new to VB .NET. In this chapter, we'll show you how to use both.

Part II of this book, The Reference, consists of one large chapter, Chapter 8, which thoroughly
details all the functions, statements, directives, objects, and object members that make up the
VB .NET language.

The third and final section, Part III, consists of the following appendixes:

Appendix A

A discussion of language changes from VB 6 to VB .NET.

Appendix B

A listing of all VB .NET functions, statements, and major keywords by category.

Appendix C

A list of the operators supported by VB .NET, along with a slightly more detailed treatment of
the Boolean and bitwise operators.

Appendix D

A list of VB .NET intrinsic constants, as well as VB .NET enumerations and their members.

Appendix E

For the first time, Visual Basic includes a command-line compiler?you can actually use
NotePad as your primary "development environment" for Visual Basic (although we are not
necessarily recommending this approach) and use the compiler to compile your code. This
appendix documents the operation of the Visual Basic command-line compiler.

Appendix F

A list of the language elements that have dropped out of the Visual Basic language as a result
of its transition to the .NET Framework.

The Format of the Language Reference

The following template has been used in preparing the entries for functions, procedures, statements,
properties, and methods that appear in Chapter 8:

Class

For functions, procedures, classes, or class members, the class to which the item belongs.

 29

Named Arguments

Typically, we indicate if a function, procedure, or method does not accept named arguments.
Otherwise, you can assume that the language element supports both named and positional
arguments.

Syntax

This section uses standard conventions to give a synopsis of the syntax used for the language
item. It also lists parameters and replaceable items (and indicates whether they're optional or
not), lists their data types, and provides a brief description.

Return Value

For functions, this section provides a brief description of the value or data type returned by the
function. For properties, it describes the data type of the property.

Description

A short description of what the language element does and when and why it should be used.

Rules at a Glance

This section describes the main points of how to use the function. The dos and don'ts are
presented in the form of a bulleted list to let you quickly scan through the list of rules. In the
vast majority of cases, this section goes well beyond the basic details found in the VB
documentation.

Example

We've tried to avoid the kind of gratuitous examples commonly found in documentation that
only manage to illustrate the obvious. Instead, we've used short code fragments that help to
enhance your understanding of how the language element is used.

Programming Tips and Gotchas

This is the most valuable section of Chapter 8, in our opinion, and it is gained from years of
experience using the VB language in a variety of projects and applications. The information
included here will save you countless hours of head scratching and experimentation. Often,
this is the stuff Microsoft doesn't tell you!

See Also

A simple cross-reference list of related or complimentary language elements.

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Constant width

Constant width in body text indicates a language construct, such as a VB .NET statement (like
For or Do While), an enumeration, an intrinsic or user-defined constant, a structure (i.e., a
user-defined type), an operator, a declaration, a directive, or an expression (like
dblElapTime = Timer - dblStartTime). Code fragments and code examples appear
exclusively in constant-width text. In syntax statements and prototypes, text set in constant

 30

width indicates such language elements as the function or procedure name and any invariable
elements required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter names. In syntax statements or
prototypes, constant width italic indicates replaceable parameters. In addition, constant width
italic is used in both body text and code fragments to denote variables.

Italic

Italicized words in the text indicate intrinsic or user-defined functions and procedure names.
Many system elements, such as paths and filenames, are also italicized. In addition, URLs
and email address are italicized. Finally, italics are used the first time a term is used.

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

It's our hope that as the Visual Basic language continues to grow and evolve, so too will VB .NET
Language in a Nutshell, and that the book will come to be seen by VB developers as the official (so to
speak) unofficial documentation on the Visual Basic language. To do that, we need your help. If you
see errors here, we'd like to hear about them. If you're looking for information on some VB language
feature and can't find it in this book, we'd like to hear about that, too. And finally, if you would like to
contribute your favorite programming tip or gotcha, we'll do our best to include it in the next edition of
this book. You can request these fixes, additions, and amendments to the book at our web site,
http://www.oreilly.com/catalog/vbdotnetnut/.

In addition, Steven Roman maintains a web site at www.romanpress.com that includes information
on his other books published by O'Reilly (and others), articles on VB/VBA and VB .NET, and a variety
of software.

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are
grateful to our spouses and families for their support in helping to bring this project through to
completion. Steve would like to thank Donna; Ron would like to thank Vanessa and Sean; and Paul
would like to thank Deb, Russel, and Victoria.

 31

In commemorating the tenth anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a reality.
Truly, it has been a monumental accomplishment that has transformed the way in which applications
are created.

We'd also like to thank the book's technical reviewers, Daniel Creeron, Budi Kurniawan, and Matt
Childs, for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter and Chris
Dias at Microsoft for their help in answering our annoying questions and for reviewing the manuscript.

 32

 33

Part I: The Basics

This section serves as a general introduction to Visual Basic .NET, Microsoft's version of Visual Basic
for the .NET platform. Taken together, these chapters form an extremely fast-paced introduction to the
most critical VB .NET programming topics. If you're an experienced programmer who is learning
VB .NET as a second (or additional) programming language, the material should familiarize you with
VB .NET in as short a time as possible.

In addition to its role as a tutorial, Chapter 2 is an essential reference to the data types supported by
VB .NET.

Part I consists of the following chapters:

• Chapter 1
• Chapter 2
• Chapter 3
• Chapter 4
• Chapter 5
• Chapter 6
• Chapter 7

Chapter 1. Introduction

Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact, in
slightly more than a decade, it has become the world's most widely used programming language, with
an installed base of somewhere between three and five million developers (depending on the
particular source you use and whether the estimate includes only the retail versions of the Visual Basic
product or the hosted version of Visual Basic for Applications (VBA) as well).

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application
development (RAD) environment for corporate and commercial applications. Second, Visual Basic
offers a programming language and development environment noted for its simplicity and ease of use,
making it an extremely attractive choice for those new to programming.

With the release of its new .NET platform, Microsoft also released a new version of the Visual Basic
language, Visual Basic .NET. VB .NET is a from-the-ground-up rewrite of Visual Basic that not only
adds a number of new features, but also differs significantly from previous versions of Visual Basic.
From a high-level view, two of these differences are especially noteworthy:

• Until the release of VB .NET, Microsoft focused on creating a unified version of VBA, the
language engine used in Visual Basic, which could serve as a "universal batch language" for
Windows and Windows applications. With Version 6 of Visual Basic, this goal was largely
successful: VB 6.0 featured VBA 6.0, the same language engine that drives the individual
applications in the Microsoft Office 2000 suite, Microsoft Project, Microsoft FrontPage,
Microsoft Visio, and a host of popular third-party applications such as AutoDesk's AutoCAD
and Corel's WordPerfect Office 2000. With the release of VB .NET, this emphasis on a unified
programming language has, for the moment at least, faded into the background, as the hosted
version of Visual Basic continues to be VBA rather than VB .NET.

• Since Version 4, Visual Basic had increasingly been used as a kind of "glue language" to
access COM components and their object models, such as ActiveX Data Objects (ADO),
Collaborative Data Objects (CDO), or the Outlook object model. Although VB .NET supports
COM for reasons of "backward compatibility," VB .NET is designed primarily to work with
the .NET Framework rather than with COM.

 34

You may be wondering why Microsoft would totally redesign a programming language and
development environment that is so wildly successful. As we shall see, there is some method to this
madness.

1.1 Why VB .NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in need of
application and utility software. Although Windows 3.0 itself had proven successful, the graphical
applications that offered native support for Windows—and upon whose release the ultimate success or
failure of Windows would depend—were slow in coming. The major problem was that C and C++
programmers, who had produced the majority of applications for the MS-DOS operating system, were
faced with a substantial learning curve in writing Windows applications and adapting to Windows'
event-driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming model
that was thoroughly consistent with Windows' graphical nature. Although Windows marked a radical
change in the way programs were written, C and C++ programmers continued to produce code as
they always had: a text editor was used to write source code, the source code was compiled into an
executable, and the executable was finally run under Windows. Visual Basic programmers, on the
other hand, worked in a programming environment that its critics derisively labeled a "drawing
program." Visual Basic automatically created a form (or window) whenever the developer began a new
project. The developer would then "draw" the user interface by dragging and dropping controls from a
toolbox onto the form. Finally, the developer would write code snippets that responded to particular
events (such as the window loading or the window being resized). In other words, Visual Basic's initial
success was due to its ease of use, which in turn reflected that Visual Basic offered a graphical
programming environment that was entirely consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a simple
"Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in Visual
Basic (see Example 1-2). While the former program is over two pages long, its Visual Basic
counterpart takes only three lines of code—and two of them are provided automatically by the Visual
Basic environment itself.

Example 1-1. "Hello World" in C
// "Hello World" example
//
// The user clicks a command button, and a "Hello World"
// message box appears.
#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
 {
 static char szAppName[] = "SayHello" ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASSEX wndclass ;

 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH) ;

 35

 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION) ;

 RegisterClassEx(&wndclass) ;

 hwnd = CreateWindow(szAppName, "Hello World",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow(hwnd, iCmdShow) ;
 UpdateWindow(hwnd) ;

 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg) ;
 DispatchMessage(&msg) ;
 }
 return msg.wParam ;
 }

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM wParam,
 LPARAM lParam)
 {
 int wNotifyCode ;
 HWND hwndCtl ;
 static HWND hwndButton ;
 static RECT rect ;
 static int cxChar, cyChar ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (iMsg)
 {
 case WM_CREATE :
 hdc = GetDC(hwnd) ;
 SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 GetTextMetrics(hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 ReleaseDC(hwnd, hdc) ;
 GetClientRect(hwnd, &rect) ;

 hwndButton = CreateWindow("BUTTON", "&Say Hello",
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 (rect.right-rect.left)/20*9,
 (rect.bottom-rect.top)/10*4,
 14 * cxChar, 3 * cyChar,
 (HWND) hwnd, 1,
 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;

 return 0 ;

 case WM_SIZE :
 rect.left = 24 * cxChar ;
 rect.top = 2 * cyChar ;
 rect.right = LOWORD (lParam) ;
 rect.bottom = HIWORD (lParam) ;

 36

 return 0 ;

 case WM_PAINT :
 InvalidateRect(hwnd, &rect, TRUE) ;

 hdc = BeginPaint(hwnd, &ps) ;
 EndPaint(hwnd, &ps) ;
 return 0 ;

 case WM_DRAWITEM :
 case WM_COMMAND :
 wNotifyCode = HIWORD(wParam) ;
 hwndCtl = (HWND) lParam ;

 if ((hwndCtl == hwndButton) && (wNotifyCode == BN_CLICKED))
 MessageBox(hwnd, "Hello, World!", "Greetings", MB_OK) ;

 ValidateRect(hwnd, &rect) ;

 break ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
 }

Example 1-2. "Hello World" in Visual Basic
Private Sub Command1_Click()

MsgBox "Hello, World", vbOKOnly Or vbExclamation, "Hi!"

End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm commitment
to Visual Basic and worked very hard to increase its power and flexibility with each new release. By
the time Version 3.0 was released, Visual Basic offered a programming paradigm that was completely
intuitive, making it easy for novice programmers to get started and produce simple applications very
quickly. At the same time, particularly through its ability to access the Windows Application
Programming Interface (API) and through its support for add-on controls, Visual Basic had become a
programming tool capable of creating applications of considerable sophistication and complexity.

Like VB .NET, Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit
family of operating systems, was a complete rewrite of Visual Basic. It featured limited support for
object-oriented programming in the form of class modules (CLS files) and the ability to generate not
only Windows executables, but ActiveX DLLs (also known as COM components) as well.

In the periods shortly before and after the release of VB 4, the character of programming changed
dramatically. The rise of the Internet as an application platform meant that standalone Windows
applications were becoming less and less necessary. The increased prominence of distributed
applications that assumed the presence of the Internet marked another change in programming
paradigms. Yet, Visual Basic's real strength remained as it always had been: a great platform for
developing standalone Windows applications.

This disparity between Visual Basic's strengths and the prevailing programming paradigm, which
emphasized distributed applications and the Internet, created something of a contradiction. On the one
hand, Visual Basic excelled at graphically depicting the Windows interface. On the other hand,
developers were creating fewer and fewer Windows interfaces. Instead, they were now using Visual

 37

Basic primarily to write source code that would eventually be compiled into middle-tier components.
Ironically, a programming environment whose real strength and point of departure was its graphical
character was now being used as a text editor, in very much the same way the first generation of
Windows programmers used text editors to create C source code for Windows applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a
particularly good platform for developing Internet applications. With VB 6, Microsoft introduced Web
Classes as the preferred technology for Internet application development. Yet, the metaphor
presented by Web Classes (which focused on separating a web application's presentation from its
programmatic functionality) was confusing to developers, and as a result, Web Classes never became
popular. While VB remained critically important for developing middle-tier components for distributed
applications, both it and the Visual Basic community that grew up around it remained strangely
isolated from the Internet as an application platform.

Numerous detractors have labeled VB .NET as an entirely new language with little relationship to
previous versions of Visual Basic?a dubious innovation foisted on the Visual Basic community by
Microsoft in an attempt to sell a new version of its development products. However, we don't agree.
Instead, we view the introduction of VB .NET as a logical and even necessary step forward in the
development of Visual Basic as a premier programming language. The goal of VB .NET is to address
the limitations of Visual Basic as a development environment and bring it into the Internet age so that it
can remain the major platform for developing applications of all kinds. Very much like Visual Basic 1.0
offered a graphical interface that was suitable for Windows applications, VB .NET and Visual
Studio .NET aim at providing a graphical interface that is suitable for developing web applications and
for taking full advantage of the Internet as an application-development platform, as well as for
developing Windows applications and components.

1.2 What Is VB .NET?

VB .NET is a programming language designed to create applications that work with Microsoft's
new .NET Framework. The .NET platform in turn aims at addressing many of the limitations of
"classic" COM, Microsoft's Component Object Model, which provided one approach toward application
and component interoperability. These limitations included type incompatibilities when calling COM
components, versioning difficulties ("DLL hell") when developing new versions of COM components,
and the need for developers to write a certain amount of code (mostly in C++) to handle the COM
"plumbing." In contrast to VB, with its reliance on COM, VB .NET offers a number of new features and
advantages. Let's take a look at some of these.

1.2.1 Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and in the
process became an object-oriented programming language. Yet the debate persists about whether
Visual Basic is a "true" object-oriented language or whether it only supports limited features of object
orientation.

The debate centers around Visual Basic's support for inheritance, an object-oriented programming
concept that allows a class to derive its properties and its functionality from another class. Proponents
of the view that Visual Basic is object-oriented point to Visual Basic's support for interface-based
programming and the use of virtual base classes. Yet relatively few VB programmers take advantage
of interface-based programming. And interface-based programming itself does not allow a derived
class to inherit the functionality of a base class; only virtual base classes can be inherited using the
Implements keyword.

While the object-oriented character of previous versions of VB may be in doubt, there is no question
that VB .NET is an object-oriented programming language. In fact, even if VB .NET is used to write
what appears to be procedural code, it is object-oriented "under the hood," so to speak. Let's take as a
simple example the clearly procedural, nonobject-oriented program shown in Example 1-3. If we use
ILDASM (.NET's intermediate language disassembler) to look at the IL generated for this source code

 38

(see Figure 1-1), we see that internally, modMain is in fact defined as a class that has two methods,
Increment and Main.

Figure 1-1. A procedural program shown using ILDASM

Example 1-3. A procedural program for VB .NET
Public Module modMain

Public Sub Main()
 Dim x As Integer
 x = 10
 MsgBox(Increment(x))
End Sub

Private Function Increment(iVar As Integer)
 Return(iVar+1)
End Function

End Module

1.2.2 A Common Type System

Traditionally, one of the problems of calling routines written in languages from Visual Basic or of
calling Visual Basic routines from other languages is that such inter-language calls presuppose a
common type system. This is the case when calling Win32 API functions from Visual Basic, but it is
also applies to attempts to call methods in a VB COM component from other languages or to call
methods in a non-VB COM component from VB.

For instance, until the addition of the AddressOf operator, which allows us to pass a pointer to a
function or subroutine, there was no way to provide a callback function, which is required by most
Win32 API enumeration functions. As another example, it is expected that members of structures
passed to Win32 API functions be aligned on their natural boundaries, something that VB
programmers had great difficulty accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to call
and pass arguments to COM components. An excellent example is the attempt to pass an array from
a script written in JScript to a COM component, since COM sees JScript arrays as a string of comma-
delimited values rather than a COM-compatible array (called a SafeArray).

The .NET platform removes these difficulties by providing a common type system. Ultimately, all data
types are either classes or structures defined by or inherited from the .NET Base Class Library. This
common type system means that .NET components will be truly language-independent and that
a .NET component written in one language will be seamlessly interoperable with .NET components
written in any other .NET language. The problem of incompatible types simply disappears.

On the surface, VB has retained its old type system. VB still supports the Long data type, for instance,
although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB 6. Casual
inspection of the code shown in Example 1-4 suggests that VB has retained its type system.

 39

However, if we use ILDASM to examine the IL generated from this Visual Basic code, we see that VB
data types are merely wrappers for data types provided by the .NET Framework. (See Figure 1-2.)

Figure 1-2. Wrapping the .NET type system

Example 1-4. Using the Visual Basic type system
Public Module modMain

Public Sub Main()

Dim s As String = "This is a string."
Dim l As Long = 12344
Dim i As Integer = 10

End Sub

End Module

The simple program in Example 1-5 also supports this conclusion. The program instantiates an
integer of type Long, a standard Visual Basic data type. It then calls the ToString method?a method of
the Int64 class?to convert that number to its string representation. In other words, the variable l in
Example 1-5 is really an Int64 data type masquerading as a traditional VB Long data type.

Example 1-5. Calling .NET type methods from a VB data type
Public Module modMain

Public Sub Main()

Dim l As Long = 64.31245
Dim s As String

s = l.ToString
MsgBox(s)

End Sub

End Module

1.2.3 Access to System Services: The Framework Class Library

 40

Ever since VB added support for calls to routines in the Windows and Win32 APIs, many Visual Basic
programmers came to regard API programming as a kind of black art. Not only were there a confusing
and seemingly limitless array of functions that might be called, but also passing parameters to routines
and receiving their return values often seemed to be a mysterious process. Moreover, with the growing
emphasis on object-oriented programming, the Win32 API, with its function-based approach to
programming, seemed more and more archaic.

Although the Declare statement remains in VB and programmers can still call the Win32 API and
routines in other external Windows DLLs, many of the common system services provided by the
Win32 API, as well as by some COM components, are now provided by the .NET Framework Class
Library. The Framework Class Library is a collection of types (classes, structures, interfaces,
delegates, and enumerations) organized into namespaces.

To get some sense of the difference in programming style between the Win32 API and the .NET
Framework Class Library, as well as to appreciate the simplicity and ease with which the Framework
Class Library can be accessed, compare Examples 1-6 and 1-7. Example 1-6 is a VB 6 routine that
creates a value entry in the registry to load a particular program on Windows startup. Note that all API
constants must be defined, as must the API functions themselves.

In addition, the API functions must be called correctly. In particular, to avoid passing a BSTR rather
than a C null-terminated string to the RegSetValueEx function, the string must be passed using the
ByVal keyword. This is a common oversight that usually causes an application crash. In contrast,
Example 1-7 shows the comparable VB .NET code that uses the RegistryKey class in the
Microsoft.Win32 namespace of the Framework Class Library. Note that the code is short and simple,
and, therefore, far less error-prone.

Example 1-6. Writing to the registry using the Win32 API
Private Const ERROR_SUCCESS = 0&

Private Const HKEY_CLASSES_ROOT = &H80000000
Private Const HKEY_CURRENT_CONFIG = &H80000005
Private Const HKEY_CURRENT_USER = &H80000001
Private Const HKEY_DYN_DATA = &H80000006
Private Const HKEY_LOCAL_MACHINE = &H80000002
Private Const HKEY_PERFORMANCE_DATA = &H80000004
Private Const HKEY_USERS = &H80000003

Private Const REG_SZ = 1

Private Const KEY_SET_VALUE = &H2

Private Declare Function RegCloseKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long
Private Declare Function RegOpenKeyEx Lib "advapi32.dll" _
 Alias "RegOpenKeyExA" _
 (ByVal hKey As Long, ByVal lpSubKey As String, _
 ByVal ulOptions As Long, ByVal samDesired As Long, _
 phkResult As Long) As Long
Private Declare Function RegSetValueEx Lib "advapi32.dll" _
 Alias "RegSetValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal Reserved As Long, ByVal dwType As Long, lpData As Any, _
 ByVal cbData As Long) As Long

Private Sub LoadByRegistry()

 Const cPGM As String = "C:\Test\TestStartup.exe"

 Dim hKey As Long, nResult As Long

 41

 nResult = RegOpenKeyEx(HKEY_CURRENT_USER, _
 "Software\Microsoft\Windows\CurrentVersion\Run", 0, _
 KEY_SET_VALUE, hKey)

 If nResult = ERROR_SUCCESS Then
 RegSetValueEx hKey, "MyVBApp", 0, REG_SZ, ByVal cPGM, Len(cPGM)
 RegCloseKey hKey
 End If

End Sub

Example 1-7. Writing to the registry using the Framework Class Library
Private Const cPGM As String = "C:\VB Forum\startup\TestStartup.exe"

Private Shared Sub LoadByRegistry()

 Dim oReg As RegistryKey = Registry.CurrentUser
 Dim oKey as RegistryKey = _
 oReg.OpenSubKey("Software\Microsoft\Windows\CurrentVersion\Run", _
 True)

 oKey.SetValue("MyVBApp", cPGM)

End
Sub

1.2.4 A Common Runtime Environment

Although VB traditionally had shielded the developer from many of the intricacies of Windows as an
operating system or of COM as a method for interoperability, nevertheless, some slight knowledge of
how the system worked was essential, or the developer was sure to run into trouble sooner or later.
For instance, consider the following code fragment for VB 6:

Dim oObj As New cSimpleClass

Set oObj = Nothing

If oObj Is Nothing Then
 ' Perform cleanup
End If

Because of an idiosyncrasy of VB, objects declared and instantiated using the New keyword on the
same line of code are not actually created until the first reference to that object. As a result, our
attempt to determine if the object is Nothing instead recreates the object, and our cleanup code
never executes.

This, at least, is usually a relatively benign error. Much more pernicious, however, are circular object
references, where COM objects hold references to one another and therefore cannot be released,
even though they've been set to Nothing in code. This situation creates a memory leak that
eventually can result in a General Protection Fault.

Under .NET, many problems like these are eliminated because of the .NET platform's Common
Language Runtime (CLR). The CLR, as its name clearly implies, provides a variety of services to
applications and processes running under the .NET platform, regardless of the language in which they
were originally written. These services include memory management and garbage collection. They
also include a unified system of exception handling, which makes it possible to use the same set of
debugging tools on all code, regardless of the particular .NET language in which it was written.

 42

1.3 What Can You Do with VB .NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is a
thoroughly modernized language that will likely become the premier development tool for creating a
wide range of .NET applications. In the past, Visual Basic was often seen as a "lightweight" language
that could be used for particular kinds of tasks, but was wholly unsuitable for others. (It was often
argued, sometimes incorrectly, that you couldn't create such things as Windows dynamic link libraries
or shell extensions using Visual Basic.) In the .NET Framework, VB .NET emerges as an equal player;
Microsoft's claim of language independence?that programming language should be a lifestyle choice,
rather than a choice forced on the developer by the character of a project?is realized in the .NET
platform.

This means that VB .NET can be used to create a wide range of applications and components,
including the following:

• Windows console mode applications
• Standard Windows applications
• Windows services
• Windows controls and Windows control libraries
• Web (ASP.NET) applications
• Web services
• Web controls and web control libraries
• .NET classes and namespaces
• Accessing application object models (such as those of the individual applications in the

Microsoft Office suite) using COM automation

Most importantly, for the first time with the release of VB .NET, Visual Basic becomes an all-purpose
development environment for building Internet applications, an area in which it has traditionally been
weak. This means that the release of this newest version should revitalize Visual Basic, allowing it to
remain the tool of choice for developing state-of-the-art software for the next generation of software
development.

 43

Chapter 2. Variables and Data Types

Many programmers take the concept of a variable for granted. In this chapter, we take a close look at
variables and their properties, discussing such things as the scope and lifetime of a variable.

2.1 Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify the variable in code. In VB .NET, a variable name can
start with a Unicode alphabetic character or an underscore, and can be followed by additional
underscore characters or various Unicode characters, such as alphabetic, numeric, formatting,
or combined characters.

Address

Every variable has an associated memory address, which is the location in memory at which
the variable's value is stored. Note that in many circumstances, the address of a variable will
change during its lifetime, so it would be dangerous to make any assumptions about this
address.

Type

The type of a variable, also called its data type, determines the possible values that the
variable can assume. We discuss data types in detail later in the chapter.

Value

The value of a variable is the contents of the memory location at the address of the variable.
This is also sometimes referred to as the r-value of the variable, since it is what really appears
on the right side of an assignment statement. For instance, in the code:

Dim i As Integer
Dim j As Integer
i = 5
j = i

the final statement can be read as "assign the value of i to memory at the address of j." For
similar reasons, the address of a variable is sometimes called its l-value.

Scope

The scope of a variable determines where in a program that variable is visible to the code.
Scope is discussed in detail in Section 2.1.1 later in this chapter.

Lifetime

A variable's lifetime determines when and for how long a particular variable exists. It may or
may not be visible (that is, be in scope) for that entire period. For a detailed discussion of
lifetime, see Section 2.1.2 later in this chapter.

2.1.1 Variable Scope

 44

Variables (and constants) have a scope, which indicates where in the program the variable is
recognized or visible to the code, that is, where it can be referred to in code.

2.1.1.1 Local variables: block-level and procedure-level scope

If a variable is declared inside a code block (a set of statements that is terminated by an End...,
Loop, or Next statement), then the variable has block-level scope ; that is, it is visible only within that
block.

For example, consider the following code:

If x <> 0 Then
 Dim rec As Integer
 rec = 1/x
End If
MsgBox CStr(rec)

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement produces an error.

It is important to note that the lifetime of a variable always refers to the entire procedure, even if the
variable's scope is block-level. (We discuss this in Section 2.1.2 later in this chapter.) This implies
that if a block is entered more than once, a block-level variable will retain its value from the previous
time the block code was executed.

A variable declared using the Dim keyword within a Visual Basic procedure but not within a code block
has procedure-level scope. Its scope consists of the procedure in which it is declared.

A variable that has block-level scope or procedure-level scope is called a local variable. One of the
advantages of local variables is that the same name can be used in different procedures without
conflict, since each variable is visible only to its own procedure. Another is that the memory allocated
to the variable can be released as soon as control leaves the procedure, making our code easier to
maintain.

2.1.1.2 Module-level and project-level scope

There are differences in the way scope is handled for variables declared in the Declarations section of
a standard module and a class module. We restrict our discussion here to standard modules,
postponing a discussion of class modules until Chapter 3.

We first note that a standard module itself can be declared using one of the access modifiers Public,
Friend, or Private (this is the default). Using such a modifier simply restricts the individual
members to that level of access at most. Thus, for instance, a Public variable declared in a Friend
module has only Friend scope.

2.1.1.2.1 Private access

A variable declared in the Declarations section of a standard module using the Private access
modifier has module-level scope; that is, it is visible in the entire module, but nowhere else. Using the
Dim keyword also gives the variable module-level scope, but its use is not as clear and should be
avoided for readability sake.

2.1.1.2.2 Friend access

 45

A variable declared in the Declarations section of a standard module using the Friend access
modifier is visible in the entire project and thus has project-level scope. However, it is not visible to
other projects.

2.1.1.2.3 Public access

A variable declared in the Declarations section of a Public standard module using the Public
access modifier is visible not only to the project in which it is declared, but also to any external project
that holds a reference to the project. For instance, consider the following module declared in Project1:

Public Module Module1
 Public iModulePublic As Integer
 Friend iModuleFriend As Integer
End Module

If Project2 has a reference to Project1, then we can write:

Project1.Module1.iModulePublic = 100

However, the code:

Project1.Module1.iModuleFriend = 100

generates a "not accessible" syntax error.

2.1.2 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple: lifetime
refers to when, or at what time during program execution the variable is valid; scope refers to where in
the program the variable is recognized by (visible to) the code.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
 Dim LocalVar As Integer = 0
 Call ProcedureB
 LocalVar = 1
End Sub

Note that LocalVar is a local variable. When the line:

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being executed, the
variable LocalVar is out of scope since it is local to ProcedureA. But it is still valid. In other words,
the variable still exists and has a value. It is simply not accessible to the code in ProcedureB. In fact,
ProcedureB could also have a local variable named LocalVar, which would have nothing to do with
the variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalVar = 1

which is a valid instruction, since the variable LocalVar is back in scope.

 46

Thus, the lifetime of the local variable LocalVar extends from the moment ProcedureA is entered to
the moment it is terminated, including the period during which ProcedureB is being executed as a
result of the call to this procedure, even though during that period, LocalVar is out of scope.

We mention again that the lifetime of a block-level variable is the lifetime of the procedure in which it is
defined.

2.1.2.1 Static variables

We have seen that a variable may go in and out of scope during its lifetime. However, once the lifetime
of a variable expires, the variable is destroyed and its value is lost. It is the lifetime that determines the
existence of a variable; its scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
End Sub

Sub ProcedureB()
 Dim x As Integer
 x = 5
 . . .
End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time ProcedureB is called,
the local variable x is created anew and destroyed at the end of that call. Thus, x is created and
destroyed five times.

Normally, this is just what we want. However, there are times when we would like the lifetime of a local
variable to persist longer than the lifetime of the procedure in which it is declared. For example, we
may want a procedure to do something special the first time it is called, but not in subsequent times.

A static variable is a local variable whose lifetime is the lifetime of the entire program. The following VB
code shows how one might use a static variable:

Sub test()

Static bFirstTime As Boolean = True

If bFirstTime Then
 Debug.WriteLine("first time")
 bFirstTime = False
Else
 Debug.WriteLine("not first time")
End If

End Sub

Note that we can initialize a static variable, provided that we do so within the variable declaration. The
following code illustrates this point:

Sub StaticTest()
 Static st As Boolean = True ' initialize static variable

 47

 MsgBox(st)
 st = False
End Sub

Private Sub button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button1.Click
 StaticTest()
End Sub

The first time we hit the button1 command button, StaticTest displays the message True, because the
static variable st has been initialized to True. However, all subsequent times we hit the button,
StaticTest returns False. This ability to initialize a static variable was missing and was a very
annoying oversight in earlier versions of VB.

We could accomplish the same effect by using a module-level variable to keep a record of whether the
procedure has been called, instead of a static local variable. However, it is considered better
programming style to use the most restrictive scope possible, which, in this case, is a local variable
with an "extended" lifetime. This helps prevent accidental alteration of the variable in other portions of
the code. (Remember that this code may be part of a much larger code module, with a lot of things
going on.)

2.2 Declaring Variables and Constants

A variable declaration is an association of a variable name with a data type. In and of itself, this does
not imply variable creation. However, for nonobject variables, a variable declaration does create a
variable. A declaration such as:

Dim x As Integer

creates an Integer variable named x. We can also write:

Dim x As Integer = New Integer()

which emphasizes the role of the constructor function for the Integer data type. (The constructor is the
function that VB .NET uses to create the variable.)

When multiple variables are declared on the same line, if a variable is not declared with an explicit
type declaration, then its type is that of the next variable with an explicit type declaration. Thus, in the
line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type Variant,
which is VB 6's default data type.)

VB .NET permits the initialization of variables in the same line as their declaration (at long last!). Thus,
we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than
one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

 48

Note that in this case, each variable that you declare must explicitly be assigned a data type. You
cannot assign each variable an explicit value without explicitly declaring the data type of each variable.

Object variables are declared in the same manner:

Dim obj As MyClass

However, this declaration does not create an object variable, and the variable is equal to Nothing at
this point. Object creation requires an explicit call to the object's constructor, as in:

Dim obj As New MyClass()

or:

Dim obj As MyClass = New Myclass()

or:

Dim obj As MyClass
obj = New MyClass()

Variables and constants can be declared with any of the following access modifiers:

• Public
• Private
• Friend
• Protected
• Protected Friend

Note also that the Dim keyword can be used as well, but it often defaults to one of the previously
mentioned access modifiers. This is potentially confusing, so the Dim keyword should only be used
when required, as it is for local variables.

Access modifiers help to specify the scope and accessibility of the variable. We discuss the meaning
of these access variables in detail in Chapter 3.

Constant declarations are analogous to variable declarations and have the form:

AccessModifier Const Name As Type = Value

where AccessModifier is one of the access modifiers defined earlier. Note that when Option
Strict is On (the default), all constant declarations must have a declared type.

2.3 Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which
defines the data types that are supported by the CLR. Thus, each of the languages in the .NET
Framework (VB, C#, JScript, and Managed C++) implements a subset of a common set of data types.
We say subset because, unfortunately, not all of the CTS types are implemented by VB .NET. For
instance, the CTS includes some unsigned integer data types that are not implemented in VB.

As an aside, it is possible to use the VB-unsupported data types in VB by direct use of the
corresponding Base Class Library class. Here is an example illustrating the ability to use the unsigned
16-bit integer data type, whose range of values is 0 to 65,535. Note the use of the ToUInt16 method of
the Convert class to actually get an unsigned 16-bit integer:

 49

Dim ui As UInt16
ui = Convert.ToUInt16(65535)
MsgBox(ui.ToString)

Thus, the native VB data types are wrappers for the CTS data types. To illustrate, the VB Integer data
type is a wrapper for the Int32 structure that is part of the .NET Framework's System namespace. One
of the members of the Int32 structure is MaxValue, which returns the maximum value allowed for this
data type. Thus, even though MaxValue is not officially part of VB .NET (nor is it mentioned in the VB
documentation), we can write:

Dim i As Integer
MsgBox(i.Maxvalue) ' Displays 2147483647

2.3.1 Value and Reference Types

The types defined in the CTS fall into three categories:

• Value types
• Reference types
• Pointer types

However, pointer types are not implemented in VB, so we will not discuss these types.

The difference between value and reference types is how variables of the corresponding type
represent that type. When a value-type variable is defined, as in:

Dim int As Integer = 5

a memory location is set aside to hold the actual data (in this case the number 5). In contrast, when a
reference-type variable is defined, as in:

Dim obj As New CEmployee

the VB compiler creates the object in memory, but then sets the variable obj to a 4-byte memory
location that contains the address of the object.

In short, value-type variables contain the data, whereas reference-type variables point to the data.

The distinction between value type and reference type has several consequences, one of which is in
the way assignments work. To illustrate, consider the following class, which has a single property:

Public Class MyClass
 Public Age As Short
End Class

and the structure MyStruct, also with a single property:

Structure MyStruct
 Public Age As Short
End Structure

Classes are reference types, whereas structures are value types. Now consider the following code,
which is thoroughly commented:

' Declare two class variables and two structure variables.
Dim objRef1 As MyClass

 50

Dim objRef2 As MyClass
Dim objValue1 As MyStruct
Dim objValue2 As MyStruct

' Instance the class.
objRef1 = New MyClass()
' Set the Age property to 20.
objRef1.Age = 20
' Set the second variable to the first variable.
' This is an equating of object *references* because
' classes are reference types.
objRef2 = objRef1
' Set the Age property of objRef2 to 30.
objRef2.Age = 30
' Check the values of the Age property.
Debug.WriteLine(objRef1.Age)
Debug.WriteLine(objRef2.Age)

' Do the same thing with the structure

' Instance the structure.
objValue1 = New MyStruct()
' Set the Age property to 20.
objValue1.Age = 20
' Set the second variable to the first variable.
' This is an equating of object *values* because
' structures are value types.
objValue2 = objValue1
' Set the Age property of objValue2 to 30.
objValue2.Age = 30
' Check the values of the Age property.
Debug.Writeline(objValue1.Age)
Debug.Writeline(objValue2.Age)

Now, the output is:

30
30
20
30

To understand what is happening, we need to realize that the reference assignment:

objRef2 = objRef1

sets both variables to the same value. But that value is the address of the object, and so both
variables point to the same object. Hence, when we change the Age property using the second
variable, this change is also reflected in the first variable.

On the other hand, the value assignment:

objValue2 = objValue1

causes a second structure to be created, setting the new structure's properties to the same value as
the original structure. Thus, changing one structure's Age property does not affect the other structure's
Age property.

Note that the VB Array type is also a reference type. To illustrate, consider the following code:

 51

Dim iArray1() As Integer = {1, 2, 3}
Dim iArray2() As Integer

iArray2 = iArray1
iArray1(0) = 100
msgbox(iArray2(0))

The message box displays 100, indicating that both array variables point to the same array.

The String data type is a reference type, implemented by the String class. However, it has some
characteristics of a value type. To illustrate, consider the following code:

Dim s1, s2 As String
s1 = "String 1"
s2 = s1
s2 = "String 2"
MsgBox(s1)

Since this is a reference type, we would expect the last line to produce the message "String 2", but
instead we get "String 1". The reason can be found in Microsoft's documentation:

An instance of String is "immutable" because its value cannot be modified once it has been created.
Methods that appear to modify a String actually return a new instance of String containing the
modification.

Thus, the code:

s2 = s1

points s2 to the same string as s1, as is usual with reference types. Then the attempt to modify the
string in the code:

s2 = "String 2"

does not produce the expected result because strings are immutable. Instead, we get a new string
pointed to by s2, while s1 retains its value.

The following code supports this conclusion:

Dim s1, s2 As String
s1 = "String 1"
' s2 poitns to same string as s1
s2 = s1
' Show s2 before any changes to the string
MsgBox(s2) ' Displays "String1"
' Change the string
s2 = "String 2"
' Set s1 to Nothing
s1 = Nothing
' Now s1 is nothing and displays accordingly
MsgBox(s1) ' Displays nothing
' s2 is a new string
MsgBox(s2) ' Displays "String 2"

Enjoy!

2.3.2 VB Data Types: A Summary

 52

The following lists the data types supported by VB .NET, along with their underlying .NET type,
storage requirements, and range of values:

Boolean

.NET CTS type: System.Boolean

Type: Value (Structure)

Storage: 2 bytes

Value range: True or False

Byte

.NET CTS type: System.Byte

Type: Value (Structure)

Storage: 1 byte

Value range: 0 to 255 (unsigned)

Char

.NET CTS type: System.Char

Type: Value (Structure)

Storage: 2 bytes

Value range: A character code from 0 to 65,535 (unsigned)

Date

.NET CTS type: System.DateTime

Type: Value (Structure)

Storage: 8 bytes

Value range: January 1, 1 CE to December 31, 9999

Decimal

.NET CTS type: System.Decimal

Type: Value (Structure)

Storage: 12 bytes

Value range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest
nonzero number is +/-0.0000000000000000000000000001

 53

Double (double-precision floating point)

.NET CTS type: System.Double

Type: Value (Structure)

Storage: 8 bytes

Value range: -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer

.NET CTS type: System.Int32

Type: Value (Structure)

Storage: 4 bytes

Value range: -2,147,483,648 to 2,147,483,647

Long (long integer)

.NET CTS type: System.Int64

Type: Value (Structure)

Storage: 8 bytes

Value range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Object

.NET CTS type: System.Object

Type: Reference (Class)

Storage: 4 bytes

Value range: Any type can be stored in an Object variable.

Short

.NET CTS type: System.Int16

Type: Value (Structure)

Storage: 2 bytes

Value range: -32,768 to 32,767

Single (single precision floating point)

.NET CTS type: System.Single

 54

Type: Value (Structure)

Storage: 4 bytes

Value range: -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values

String (variable-length)

.NET CTS type: System.String

Type: Reference (Class)

Storage: 10 bytes + (2 * string length)

Value range: 0 to approximately 2 billion Unicode characters

User-Defined Type (structure)

.NET CTS type: (inherits from System.ValueType)

Type: Value (Structure)

Storage: Sum of the sizes of its members

Value range: Each structure member has range determined by its data type and is
independent of the ranges of the other members.

Note that the CTS data types are either structures (which are value types) or classes (which are
reference types) and are located within the .NET System namespace.

2.3.3 Simple Data Types in Visual Basic

In this section, we discuss data types in general and VB .NET data types in particular.

Simple data types can be classified into groups as follows. Note that these groups are not mutually
exclusive:

Numeric data type

A data type in which the underlying set is a set of numbers and for which the set of operations
includes the arithmetic operations.

Integer data type

A numeric data type in which the underlying set is a set of integers. (As we will see, VB has
several integer data types.)

Floating-point data type

A noninteger data type whose underlying set is a subset of the rational numbers.

Boolean data type

A data type whose underlying set has size 2. This set is usually thought of as {True, False}.

 55

Character data type

A data type whose underlying set is a set of characters. Of course, each value must be
represented in memory as a binary string, which can also be interpreted as a number.
Nevertheless, this interpretation is not part of a character data type.

Let us consider the Visual Basic .NET data types individually.

2.3.3.1 Boolean data type

The Boolean is a 16-bit data type that can only represent two values: True and False. The VB
keywords True and False are used to assign these values to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to True, and zero is
converted to False. In the other direction, False is converted to zero, and True is converted to -1.
(Incidentally, in C, C#, and C++, True is converted to 1. This change was made in Beta 1 of VB .NET
to bring it in line with the other languages, but was subsequently changed back in Beta 2.)

The underlying .NET data type for Boolean is System.Boolean.

2.3.3.2 Byte data type

The Byte data type is an 8-bit unsigned data type whose range is the set of integers from 0 to 255.
According to the documentation, the Byte data type "is used for containing binary data." Since ordinary
arithmetic operations can be used with Byte variables, the data type is, in this sense, an integer data
type. Also, there do not appear to be any special operators, such as shift operators, that would give
the type a "binary data" flavor. Oh well.

The underlying .NET data type for Byte is System.Byte.

2.3.3.3 Char data type

The Char data type is a 16-bit character data type with a character code ranging from 0 to 65,535,
which represent a single Unicode character. As a data type, Char is new to VB .NET; there was no
equivalent in previous versions of Visual Basic.

It is important not to confuse the Char and String data types. (We discuss this data type in the "String
data type" section.) A string consisting of a single character is not the same as a Char. To illustrate,
consider defining a new string and initializing it to a sequence consisting of a repeated single
character, for example, "AAAAA." In earlier versions of VB, this was done as follows:

Dim s As String
s = String$(5, "A")

In VB .NET, this is done using the String class constructor, which has the syntax:

Dim variable As New String(Character, Integer)

If we turn strict type checking on with the Option Strict On statement, the code:

Dim s As New String("A",5)

produces the error message, "Option Strict disallows implicit conversions from String to Char."

To get a Char, we must append a c to the end of the string literal. Thus, the following works:

 56

Dim s As New String("A"c, 5)

The underlying .NET data type for Char is System.Char.

2.3.3.4 Date data type

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January 1,
0001 to December 31, 9999 (which should be plenty), and times from 0:00:00 to 23:59:59.

Literal strings must be enclosed in number signs (#) to be recognized as dates. The VB .NET compiler
changes date formats automatically. For instance, if we enter the code:

Dim d As Date
d = #November 9, 1948#
Msgbox(d)

the compiler changes the second line to:

d = #11/9/1948#

or whatever the regional settings on the host system dictate. The .NET equivalent of Date is
System.DateTime.

2.3.3.5 Decimal data type

Values of the Decimal data type are stored as 96-bit (12-byte) signed integers, along with an internal
scale factor ranging from 0 to 28, which is applied automatically when we set a value for a Decimal
variable. This allows us to enter values from a number of different ranges.

For instance, we can use integers (no decimal part) in the range:

+/-79,228,162,514,264,337,593,543,950,335

in which case the scale factor is set to 0. On the other extreme, we can use values in the range:

-7.9228162514264337593543950335 to -0.0000000000000000000000000001

on the negative side, or:

0.0000000000000000000000000001 to 7.9228162514264337593543950335

on the positive side. In this case, the scale factor is set to 28.

To write a literal Decimal, append a D, as in:

123456.789D

The type identifier for Decimal is the symbol @, as in:

Dim dec@

The underlying .NET data type for Decimal is System.Decimal. This class has some useful members,
such as MaxValue and MinValue, which give the maximum and minimum values of the decimal type.

 57

By the way, in previous versions of VB, the Decimal existed only as a Variant data subtype—there
were no variables of type Decimal.

2.3.3.6 Double data type

Values of type Double are IEEE 64-bit (8-byte) floating-point numbers with the range:

-1.79769313486231E308 to -4.94065645841247E-324

on the negative side, and:

4.94065645841247E-324 to 1.79769313486232E308

on the positive side.

To write a literal Double, we must append an R, as in:

12345.678R

The type identifier for a Double is #, as in:

Dim dbl#

The underlying .NET data type for Double is System.Double.

2.3.3.7 Integer data type

The Integer data type is a 32-bit data type that stores signed integers ranging from:

-2^31 to 2^31-1

or:

-2,147,483,648 to 2,147,483,647

Note that this is the native word size on a 32-bit processor, and so the Integer data type provides
superior performance as compared to integer data types of other sizes.

Note also that this data type size is new for VB .NET. In VB 6 and earlier, the Integer data type was a
16-bit data type.

To define a literal Integer, append an I, as in:

123I

The Integer type identifier is the percent sign (%), as in:

Dim int%

The underlying .NET data type for Integer is System.Int32.

2.3.3.8 Long data type

The Long data type is a 64-bit integer data type that stores signed integers ranging from:

 58

-2^63 to 2^63-1

or:

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Note that this data type size is new for VB .NET. In VB 6 and earlier, the Long data type was a 32-bit
data type.

To define a literal Long, append an L, as in:

123L

The Long type identifier is the ampersand sign (&), as in:

Dim lng&

The underlying .NET data type for Long is System.Int64.

2.3.3.9 Object data type

The Object data type is a pointer data type. That is, a value of type Object is an address that
references the object in memory. In VB .NET, the Object data type is the universal data type; an
Object variable can refer to (point to) data of any other data type. For instance, the following code
places a Long value in an Object variable:

Dim obj As Object
obj = 123L

The underlying .NET data type for Object is System.Object.

It is worth noting that when we use variables of type Object, we do pay a performance penalty
because VB .NET cannot bind the object's method invocations to the actual method code until runtime.
This is referred to as late binding. On the other hand, declaring variables of a specific object type
allows early binding at compile time, which is much more efficient. Thus, code such as:

Dim obj As Object
. . .
obj.AMethod

is much less efficient than:

Dim obj As System.Data.DataSet
. . .
obj.AMethod

We revisit this issue in more detail later in this chapter.

As we have seen, the Object data type is universal. Just as in VB 6, in which you can use the VarType
function to determine the data subtype of a Variant, in VB .NET you can use the VarType function to
determine the data subtype of an object.

In addition, the Object class in the Base Class Library's System namespace has a method named
GetType that returns an object of type Type. Thus, if obj is a variable of type Object, then the code:

 59

obj.GetType

returns a Type object. In turn, the Type class, which is also a member of the Base Class Library's
System namespace, has two methods that return information about the subtype of the object:

• ToString returns a string that describes the subtype of the data. It is roughly equivalent to
calling the VB .NET TypeName function, except that the former method uses the data type
name from the .NET Base Class Library, whereas the latter function uses the Visual Basic
name.

• GetTypeCode returns an enumeration value from the TypeCode enumeration. It is roughly
equivalent to calling the VB6 VarType function, which, as we have said, is no longer supported
in VB .NET.

For reference, the following code generates the values in Table 2-1:

Dim obj As Object
obj = ???
debug.write(obj.GetType.ToString)
Debug.Write(TypeName(obj))
debug.writeline(Type.GetTypeCode(obj.GetType))

Table 2-1. Values of ToString and GetTypeCode
obj = ??? ToString TypeName GetType

obj = True System.Boolean Boolean 3

obj = CByte(100) System.Byte Byte 6
obj = #1/1/2000# System.DateTime Date 16
obj = CDec(100) System.Decimal Decimal 15
obj = CDbl(100) System.Double Double 14
obj = CInt(100) System.Int32 Integer 9
obj = CLng(100) System.Int64 Long 11
obj = CShort(100) System.Int16 Short 7
obj = CSng(100) System.Single Single 13
obj = "Donna" System.String String 18

2.3.3.10 Short data type

The Short data type is a 16-bit integer data type that stores signed integers ranging from:

-2^15 to 2^15-1

or:

-32,768 to 32,767

Note that in earlier versions of Visual Basic, the Short data type is called the Integer data type.

To define a literal Short, append an S, as in:

123S

The underlying .NET data type for Short is System.Int16.

2.3.3.11 Single data type

 60

Values of type Single are IEEE 32-bit (4-byte) floating-point numbers with the range:

-3.402823E38 to -1.401298E-45

on the negative side, and:

1.401298E-45 to 3.402823E38

on the positive side.

To write a literal Single, we must append an F (for floating point), as in:

12345.678F

The type identifier for a Single is an exclamation point (!), as in:

Dim sng!

The underlying .NET data type for Single is System.Single.

2.3.3.12 String data type

The String data type represents Unicode strings of up to approximately 2 billion characters. The type
identifier for the string data type is a dollar sign ($). The underlying .NET data type for this type is
System.String.

To create a new string, we can declare a variable and assign it a string as follows:

Dim sName As String
sName = "Donna"

or equivalently, in one statement:

Dim sName As String = "Donna"

The type identifier for a String is a dollar sign ($), as in:

Dim str$

2.3.3.13 Structure data type: user-defined types

In VB .NET, the Structure type is a powerful data type that has many properties in common with
classes.

To declare a structure, we use the Structure statement, whose syntax is:

[Public|Private|Friend] Structure StructureName
 Nonmethod member declarations
 Method member declarations
End Structure

The members of a structure can be variables, properties, methods, or events. Note, however, that
each member must be declared with an access modifier: Public (or Dim), Private, or Friend.

 61

The simplest and most common use of structures is to encapsulate related variables. For instance, we
might define a structure as follows:

Structure strPerson
 Public Name As String
 Public Address As String
 Public City As String
 Public State As String
 Public Zip As String
 Public Age As Short
End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Note that structure members can be other structures or other objects. Structures can also be passed
as arguments to functions, or as the return type of a function.

As mentioned, structures are similar to classes. For instance, consider the following structure:

Structure strTest
 ' A public nonmethod member
 Public Name As String
 ' A private member variable
 Private msProperty As String
 ' A public method member
 Public Sub AMethod()
 Msgbox("Structure method. Property is: " & msProperty)
 End Sub
 ' A public property member
 Public Property AProperty() As String
 Get
 AProperty = msProperty
 End Get
 Set
 msProperty = Value
 End Set
 End Property
End Structure

Now we can set the structure's property and invoke its method as follows:

Dim str As strTest
str.AProperty = "Donna"
str.AMethod()

Although structures are similar to classes, they do not support the following class features:

• Structures cannot explicitly inherit, nor can they be inherited.
• All constructors for a structure must be parameterized.
• Structures cannot define destructors.
• Member declarations cannot include initializers nor can they use the As New syntax or specify

an initial array size.

 62

For a reference to the object-oriented terminology, see Chapter 3.

2.3.4 Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A cast
operator can be applied to a literal value or to a variable of a given type. For instance, we have:

Dim lng As Long
Dim int As Integer = 6
' Cast an Integer variable to a Long
lng = CLng(Int)
' Cast a literal integer to a Long
lng = CLng(12)

A cast can be widening or narrowing. A widening cast is one in which the conversion is to a target data
type that can accommodate all values in the source data type, such as casting from Short to Integer or
Integer to Double. In such a case, no data is ever lost, and the cast will not generate an error. A
narrowing cast is one in which the target data type cannot accommodate all values in the source data
type. In this case, data may be lost, and the cast may not succeed.

Under VB .NET, conversions are made in two ways: implicitly and explicitly. An implicit conversion is
done by the compiler when circumstances warrant it (and if it is legal). For instance, if we write:

Dim lng As Long
lng = 54

then the compiler casts the Integer 54 as a Long.

The type of implicit conversion that the compiler will do depends in part on the setting of the Option
Strict value. For instance, if Option Strict is On, only widening casts can be implicit; so then the
following code:

Dim b As Boolean
b = "True"

generates a type conversion error, whereas if we add the line:

Option Strict Off

to the beginning of the module, then the previous code executes without error.

Explicit conversion requires explicitly calling a conversion function (or cast operator). The type
conversion functions supported by VB .NET all have the form:

Cname(expression)

where expression is an expression that is in the range of the target data type. Specifically, we have
the following conversion functions:

CBool

Converts any valid String or numeric expression to Boolean. When a numeric value is
converted to Boolean, any nonzero value is converted to True, and zero is converted to
False.

CByte

 63

Converts any numeric expression in the range 0 to 255 to Byte, while rounding any fractional
part.

CChar

Takes a string argument and returns the first character of the string as a Char data type.

CDate

Converts any valid representation of a date or time to Date.

CDbl

Converts any expression that can be evaluated to a number in the range of a Double to
Double.

CDec

Converts any expression that can be evaluated to a number in the range of a Decimal to
Decimal.

CInt

Converts any numeric expression in the range of Integer (-2,147,483,648 to 2,147,483,647) to
Integer, while rounding any fractional part.

CLng

Converts any expression that can be evaluated to a number in the range of a Long to Long,
while rounding any fractional part.

CObj

Converts any expression that can be interpreted as an object to Object. For instance, the code:

Dim obj As Object
obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

CShort

Converts any numeric expression in the range -32,768 to 32,767 to Short, while rounding any
fractional part.

CSng

Converts any expression that can be evaluated to a number in the range of a Single to Single.
If the numeric expression is outside the range of a Single, an error occurs.

CStr

If the expression input to CStr is Boolean, the function returns one of the strings "True" or
"False." For an expression that can be interpreted as a date, the return value is a string

 64

representation of that date, in the date format defined by the regional settings of the host
computer. For a numeric expression, the return value is a string representing the number.

CType

A general-purpose conversion function, CType has the following syntax:

CType(expression, typename)

where expression is an expression or variable, and typename is the data type to which it
will be converted. The function supports conversions to and from the standard data types, as
well as to and from object data types, structures, and interfaces.

2.4 Arrays

The array data type is a fundamental data type in most languages, including Visual Basic. An array is
used to store a collection of similar data types or objects.

Many authors of programming books misuse the terms associated with arrays, so let's begin by
establishing the correct terminology. In fact, if you will indulge us, we would like to begin with a formal
definition of the term array.

2.4.1 Definition of Array

Let S1, S2 ..., SN be finite sets, and let T be a data type (such as Integer). Then an array of type T is a
function:

arr:S1 x S2 x ... x SN

 T

where S1 x S2 x ... x SN is the Cartesian product of the sets S1, S2 ..., SN. (This is the set of all n-tuples
whose coordinates come from the sets Si.)

For arrays in VB .NET (and the other languages that implement the Common Language Runtime), the
sets Si must have the form:

Si={0,1,...,Ki}

In other words, each set Si is a finite set of consecutive integers starting with 0.

Each position in the Cartesian product is referred to as a coordinate of the array. For each coordinate,
the integer Ki is called the upper bound of the coordinate. The lower bound is 0 for all arrays in
VB .NET.

2.4.2 Dimension of an Array

The number N of coordinates in the domain of the function arr is called the dimension (or sometimes
rank) of the array. Thus, every array has a dimension (note the singular); it is not correct to refer to the
dimensions of an array (note the plural). An array of dimension 1 is called a one-dimensional array, an
array of dimension 2 is called a two-dimensional array, and so on.

2.4.3 Size of an Array

Along with a dimension, every array has a size. For instance, the one-dimensional array:

 65

arr:{0,1,...,5}

 T

has size 6. The two-dimensional array:

arr:{0,1,...,5}x{0,1,...,8}

 T

has size 6x9. The three-dimensional array:

arr:{0,1,...,5}x{0,1,...,8}x{0,1}

 T

has size 6x9x2.

2.4.4 Arrays in VB .NET

In VB .NET, all arrays have lower bound 0. This is a change from earlier versions of VB, where we
could choose the lower bound of an array.

The following examples show various ways to declare a one-dimensional array:

' Implicit constructor: No initial size and no initialization
Dim Days() As Integer

' Explicit constructor: No initial size and no initialization
Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization
Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization
Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization
Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

' Explicit constructor, Initial size and initialization
Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that an array declaration can:

• Call the array's constructor implicitly or explicitly. (The constructor is the function that VB .NET
uses to create the array.)

• Specify an initial size for each dimension or leave the initial size unspecified.
• Initialize the elements of the array or not.

It is important to note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array elements are ArrayName(0) through
ArrayName(X), and the array has X+1 elements.

 66

Multidimensional arrays are declared similarly. For instance, the following example declares and
initializes a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))
Debug.Write(X(0, 1))
Debug.Writeline(X(0, 2))
Debug.Write(X(1, 0))
Debug.Write(X(1, 1))
Debug.Write(X(1, 2))

123
456

In VB .NET, all arrays are dynamic: there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the ReDim
statement. Note, however, that the dimension of an array cannot be changed.

Moreover, unlike with VB 6, the ReDim statement cannot be used for array declaration, but can be
used only for array redimensioning. All arrays must be declared initially using a Dim (or equivalent)
statement.

2.4.4.1 Redimensioning arrays

The ReDim statement is used to change the size of an array. This is referred to as redimensioning -- a
term no doubt invented by someone who didn't know the difference between the dimension of an array
and the size of an array! In any case, redimensioning changes the size of the array, not its dimension.
In fact, as we have already mentioned, the dimension of an array cannot be changed.

The UBound function returns the upper limit of an array coordinate. Its syntax is:

UBound(MyArray, CoordinateIndex)

where CoordinateIndex is the index of the coordinate for which we want the upper bound.

Here is an example of array redimensioning:

Dim MyArray(10, 10) As Integer
Msgbox(UBound(MyArray, 2)) ' Displays 10
ReDim MyArray(15, 20)
Msgbox(UBound(MyArray, 2)) ' Displays 20

When an array is redimensioned using the ReDim statement without qualification, all data in the array
is lost; that is, the array is reinitialized. However, the Preserve keyword, when used with ReDim,
redimensions the array while retaining all current values. Note that when using the Preserve
keyword, only the last coordinate of an array can be changed. Thus, referring to the array defined
earlier, the following code generates an error:

ReDim Preserve MyArray(50, 20)

You will probably not be surprised to learn that redimensioning an array is a time-intensive process.
Hence, when redimensioning, we face the ubiquitous dichotomy between saving space and saving
time. For instance, consider the code segment used to populate an array:

 67

Dim MyArray(100) As Integer
Dim i As Integer, iNext As Integer

iNext = 0
Do While (Some condition)
 If (some condition here) Then
 ' Add element to array
 If ubound(MyArray) < iNext Then
 ReDim Preserve MyArray(iNext + 100)
 End If
 MyArray(iNext) = (whatever)
 iNext = iNext + 1
 End If
Loop

The key issue here is to decide how much to increase the size of the array each time resizing is
necessary. If we want to avoid using any extra space, we could increase the size of the array by 1
each time:

ReDim Preserve MyArray(iNext + 1)

But this would be very inefficient. Alternatively, we could kick up the size by 1,000:

ReDim Preserve MyArray(iNext + 1000)

But this uses a lot of extra space. Sometimes experimentation is required to find the right compromise
between saving space and saving time.

2.5 Object Variables and Their Binding

In VB .NET, classes and their objects are everywhere. Of course, there are the classes and objects
that we create in our own applications. There are also the classes in the .NET Framework Class
Library. In addition, many applications take advantage of the objects that are exposed by other
applications, such as ActiveX Data Objects (ADO), Microsoft Word, Excel, Access, various scripting
applications, and more. The point is that for each object we want to manipulate, we will need to
declare a variable of that class type. For instance, if we create a class named CPerson, then in order
to instantiate a CPerson object, we must declare a variable:

Dim APerson As CPerson

Similarly, if we decide to use the ADO Recordset object, we will need to declare a variable of type
ADO.Recordset:

Dim rs As ADO.Recordset

Even though object variables are declared in the same manner as nonobject variables, there are some
significant differences. In particular, the declaration:

Dim obj As MyClass

does not create an object variable—it only binds a variable name with a class name. To actually
construct an object and set the variable to refer to that object, we need to call the constructor of the
class. This function, discussed in detail in Chapter 3, is responsible for creating objects of the class.

Constructors are called using the New keyword, as in:

Dim obj As MyClass = New Myclass()

 68

or:

Dim obj As MyClass
obj = New MyClass()

VB .NET also provides a shortcut that does not mention the constructor explicitly:

Dim obj As New MyClass()

(In earlier versions of VB, we use the Set statement, which is no longer supported.)

2.5.1 Late Binding Versus Early Binding

The object-variable declaration:

Dim obj As Class1

explicitly mentions the class from which the object will be created (in this case it is Class1). Because of
this, VB can obtain and display information about the class members, as we can see in VB's
Intellisense, shown in Figure 2-1.

Figure 2-1. Intellisense showing member list

As you know, Intellisense also shows the signature of a method, as shown in Figure 2-2.

Figure 2-2. Intellisense showing method signature

Of course, Intellisense is very helpful during program development. However, more important is that
the previous object-variable declaration allows VB to bind the object's methods to actual function
addresses at compile time. This is known as early binding.

An alternative to using a declaration that specifically mentions that class is a generic object-variable
declaration that uses the As Object syntax:

Dim obj As Object

While it is true that obj can hold a reference to any object, we pay a major penalty for this privilege.
VB can no longer get information about the class and its members because it does not know which
class the object obj belongs to!

 69

As a result, VB's Intellisense cannot help us with member syntax. More importantly, we pay a large
performance penalty because VB cannot bind any of the classes properties or methods at compile
time—it must wait until runtime. This is referred to as late binding.

In summary, explicit object-variable declarations allow for early binding and thus are much more
efficient than generic declarations, which use late binding. Hence, explicit object-variable declarations
should be used whenever possible.

2.6 The Collection Object

VB .NET implements a special object called the Collection object that acts as a container for objects of
all types. In fact, Collection objects can hold other objects, as well as nonobject data.

In some ways, the Collection object is an object-oriented version of the Visual Basic array. It supports
the following four methods:

Add

Adds an item to the collection. Along with the data itself, you can specify a key value by which
the member can be referenced.

Count

Returns the number of items in the collection.

Item

Retrieves a member from the collection either by its index (or ordinal position in the collection)
or by its key (assuming that a key was provided when the item was added to the collection).

Remove

Deletes a member from the collection using the member's index or key.

For example, the following code defines a collection object named colStates to hold information about
U.S. states and then adds two members to it, using the state's two-letter abbreviation as a key:

Dim colStates As New Collection
colStates.Add("New York", "NY")
colStates.Add("Michigan", "MI")

Like members of an array, the members of a collection can be iterated using the For Each...Next
construct. Also like arrays, collection members are accessible by their index value, although the lower
bound of a collection object's index is always 1.

Arrays and collections each have advantages and disadvantages. Some of the advantages of
collections over arrays are:

• New collection members can be inserted before or after an existing member in index order.
Moreover, indexes are maintained automatically by VB, so we don't need to adjust the indexes
manually.

• Collection members can be referenced by key value. This feature makes collections similar to
associative arrays (which are used by languages such as Perl).

Note that when deleting collection members by index, it is important to iterate though the indexes in
reverse order because member deletion changes the indexes of other members.

 70

2.7 Parameters and Arguments

The terms parameter and argument are often used interchangeably, although they have entirely
different meanings. Let us illustrate with an example. Consider the following function, which replicates
a string a given number of times:

Function RepeatString(ByVal sInput As String, ByVal iCount As Integer) _
 As String
 Dim i As Integer
 For i = 1 To iCount
 RepeatString = RepeatString & sInput
 Next
End Function

The variables sInput and iCount are the parameters of this function. Note that each parameter has
an associated data type.

Now, when we call this function, we must replace the parameters by variables, constants, or literals,
as in:

s = RepeatString("Donna", 4)

The items that we use in place of the parameters are called arguments.

2.7.1 Passing Arguments

Arguments can be passed to a function in one of two ways: by value or by reference. Incidentally,
argument passing is often called parameter passing, although it is the arguments and not the
parameters that are being passed.

The declaration of RepeatString given earlier contains the keyword ByVal in front of each parameter.
This specifies that arguments are passed by value to this function. Passing by value means that the
actual value of the argument is passed to the function. This is relevant when an argument is a variable.
For instance, consider the following code:

Sub Inc(ByVal x As Integer)
 x = x + 1
End Sub

Dim iAge As Integer = 20
Inc(iAge)
Msgbox(iAge)

The final line:

Msgbox(iAge)

actually displays the number 20. In other words, the line:

Inc(iAge)

does nothing. The reason is that the argument iAge is passed to the procedure Inc by value. Since
only the value (in this case 20) is passed, that value is assigned to a local variable named x within the
procedure. This local variable is increased to 21, but once the procedure ends, the local variable is
destroyed. The variable iAge is not passed to the procedure, so its value is not changed.

 71

On the other hand, if we modify the definition of the procedure Inc, replacing ByVal with ByRef, the
story is different:

Sub Inc(ByRef x As Integer)
 x = x + 1
End Sub

In this case, what is passed to the procedure Inc is a reference to the argument iAge. Hence, the
procedure actually operates on the variable passed to it, incrementing the value of iAge to 21. Put
another way, the variable represented by the parameter x is actually the passed variable iAge.

In VB .NET, the default method of argument passing for arguments is by value. This is a change from
earlier versions of VB, in which the default method was by reference.

2.7.2 Passing Objects

There is a subtlety in argument passing with parameters of any object type. Actually, the subtlety
occurs because an object variable is a pointer ; that is, it contains a reference to (or the address of)
the object.

If we pass an object variable by value, we are passing the contents of the variable, which is the
address of the object. Thus, any changes made in the called procedure affects the object itself, not a
copy of the object. This seems like passing by reference, but it is not. Think of it this way: passing the
value of an object's address is passing a reference to the object.

On the other hand, if we pass an object variable by reference, we are passing the address of the
variable. In other words, we are passing the address of the address of the object! In languages that
support pointers, this is referred to as a double pointer.

Let us illustrate with an example. Consider the following code, and imagine that the form containing
this code has two textboxes: TextBox1 with text "TextBox1" and TextBox2 with text "TextBox2":

Public Function GetText(ByVal txt As TextBox) As String
 ' Change reference to textbox
 txt = Textbox2
End Function

Sub Doit
 Dim t As TextBox
 t = TextBox1
 GetText(t)
 msgbox(t.Text) ' Displays TextBox1 when ByVal, _
 ' TextBox2 when ByRef
End Sub

Now, here is what happens when we execute DoIt. Note that the argument is passed to GetText by
value in this case.

• The TextBox variable t is assigned to TextBox1, as shown in Figure 2-3.

Figure 2-3. Assigning an object reference

 72

• GetText is called, passing t by value. Since t contains the address aaaa of the TextBox1
object, the local variable txt is given the value aaaa, as shown in Figure 2-4.

Figure 2-4. Passing an object by value

• The single line of code in GetText is executed, which now causes txt to point to TextBox2,
as shown in Figure 2-5.

Figure 2-5. Assigning a new object reference

• Upon return from GetText, t is unaffected, so the MsgBox function displays the string
"TextBox1."

Now suppose we change the ByVal keyword to ByRef in GetText. Here is what happens:

• The TextBox variable t is assigned to TextBox1, as shown previously in Figure 2-3.
• GetText is called, passing t by reference. Hence, txt is t. This is quite different from txt and

t containing the same value, as in the ByVal case. The situation is shown in Figure 2-6.

Figure 2-6. Passing an object by reference

• The single line of code in GetText is executed, which now causes txt (and hence t) to point
to TextBox2, as shown in Figure 2-7.

Figure 2-7. Assigning a new object reference

 73

• Upon return from GetText, t is now pointing to TextBox2, so the MsgBox function displays the
string "TextBox2."

2.7.3 Optional Arguments

In VB .NET, parameters can be declared as optional using the Optional keyword, as shown in the
following code:

Sub Calculate(Optional ByVal Switch As Boolean = False)

In VB .NET, all optional parameters must declare a default value, which is passed to the procedure if
the calling program does not supply that parameter.

The following rules apply to optional arguments:

• Every optional argument must specify a default value, and this default must be a constant
expression (not a variable).

• Every argument following an optional argument must also be optional.

Note that in earlier versions of VB, you could omit the default value and, if the parameter was of type
Variant, you could use the IsMissing function to determine if a value was supplied. This is not possible
in VB .NET, and the IsMissing function is not supported.

2.7.4 ParamArray

Normally, a procedure definition specifies a fixed number of parameters. However, the ParamArray
keyword, which is short for Parameter Array, permits us to declare a procedure with an unspecified
number of parameters. Therefore, each call to the procedure can use a different number of
parameters.

Suppose, for instance, that we want to define a function to take the average of a number of test scores,
but the number of scores may vary. Then we declare the function as follows:

Function GetAverage(ParamArray ByVal Scores() As Single) As Single
 Dim i As Integer
 For i = 0 To UBound(Scores)
 GetAverage = GetAverage + CSng(Scores(i))
 Next
 GetAverage = GetAverage / (UBound(Scores) + 1)
End Function

Now we can make calls to this function with a varying number of arguments:

 74

Msgbox(GetAverage(1, 2, 3, 4, 5))
Msgbox(GetAverage(1, 2, 3))

The following rules apply to the use of ParamArray:

• A procedure can only have one parameter array, and it must be the last parameter in the
procedure.

• The parameter array must be passed by value, and you must explicitly include ByVal in the
procedure definition.

• The parameter array must be a one-dimensional array. If the type is not declared, it is
assumed to be Object.

• The parameter array is automatically optional. Its default value is an empty one-dimensional
array of the parameter array's data type.

 75

Chapter 3. Introduction to Object-Oriented
Programming

In this chapter, we present a brief and succinct introduction to object-oriented programming. Since this
is not a book on object-oriented programming per se, we will confine our attention to those topics that
are important to VB .NET programming.

3.1 Why Learn Object-Oriented Techniques?

As you may know, Visual Basic has implemented some features of object-oriented programming since
Version 4. However, in terms of object-orientation, the move from Version 6 to VB .NET has been
dramatic. Many people did not consider VB 6 (or earlier versions) to be a truly object-oriented
programming language. Whatever your thoughts may have been on this matter, it seems clear that
VB .NET is an object-oriented programming language by any reasonable definition of the term.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my programming."
This is something you could easily have gotten away with in VB 6. But in VB .NET, the structure of
the .NET Framework—specifically the .NET Base Class Library—as well as the documentation, is so
object-oriented that you can no longer avoid understanding the basics of object-orientation, even if you
decide not to use them in your applications.

3.2 Principles of Object-Oriented Programming

It is often said that there are four main concepts in the area of object-oriented programming:

• Abstraction
• Encapsulation
• Inheritance
• Polymorphism

Each of these concepts plays a significant role in VB .NET programming at one level or another.
Encapsulation and abstraction are "abstract" concepts providing motivation for object-oriented
programming. Inheritance and polymorphism are concepts that are directly implemented in VB .NET
programming.

3.2.1 Abstraction

Simply put, an abstraction is a view of an entity that includes only those aspects that are relevant for a
particular situation. For instance, suppose that we want to create a software component that provides
services for keeping a company's employee information. For this purpose, we begin by making a list of
the items relevant to our entity (an employee of the company). Some of these items are:

• FullName
• Address
• EmployeeID
• Salary
• IncSalary
• DecSalary

Note that we include not only properties of the entities in question, such as FullName, but also actions
that might be taken with respect to these entities, such as IncSalary, to increase an employee's salary.
Actions are also referred to as methods, operations, or behaviors. We will use the term methods, since
this term is used by VB .NET.

 76

Of course, we would never think of including an IQ property, since this would not be politically correct,
not to mention discriminatory and therefore possibly illegal. Nor would we include a property called
HairCount, which gives the number of hairs on the employee's right arm, because this information is of
absolutely no interest to us, even though it is part of every person's being.

In short, we have abstracted the concept of an employee—we have included only those properties
and methods of employees that are relevant to our needs. Once the abstraction is complete, we can
proceed to encapsulate these properties and methods within a software component.

3.2.2 Encapsulation

The idea of encapsulation is to contain (i.e., encapsulate) the properties and methods of an
abstraction, and expose only those portions that are absolutely necessary. Each property and method
of an abstraction is called a member of the abstraction. The set of exposed members of an abstraction
is referred to collectively as the public interface (or just interface) of the abstraction (or of the software
component that encapsulates the abstraction).

Encapsulation serves three useful purposes:

• It permits the protection of these properties and methods from any outside tampering.
• It allows the inclusion of validation code to help catch errors in the use of the public interface.

For instance, it permits us to prevent the client of the employee software component from
setting an employee's salary to a negative number.

• It frees the user from having to know the details of how the properties and methods are
implemented.

Let us consider an example that involves the Visual Basic Integer data type, which is nicely
encapsulated for us by VB. As you undoubtedly know, an integer is stored in the memory of a PC as a
string of 0s and 1s called a binary string. In Visual Basic, integers are interpreted in a form called
two's-complement representation, which permits the representation of both negative and non-negative
values.

For simplicity, let us consider 8-bit binary numbers. An 8-bit binary number has the form
a7a6a5a4a3a2a1a0, where each of the a1s is a 0 or a 1. We can think of it as appearing in memory as
shown in Figure 3-1.

Figure 3-1. An 8-bit binary number

In the two's-complement representation, the leftmost bit, a7 (called the most significant bit), is the sign
bit. If the sign bit is 1, the number is negative. If the sign bit is 0, the number is positive.

The formula for converting a two's-complement representation a7a6a5a4a3a2a1a0 of a number to a
decimal representation is:

decimal rep. = -128a7 + 64a6 + 32a5 + 16a4 + 8a3 + 4a2 + 2a1 + a0

To take the negative of a number when it is represented in two's-complement form, we must take the
complement of each bit (that is, change each 0 to a 1 and each 1 to a 0) and then add 1.

At this point you may be saying to yourself, "As a programmer, I don't have to worry about these
details. I just write code like:

x = -16
y = -x

 77

and let the computer and the programming language worry about which representation to use and
how to perform the given operations."

This is precisely the point behind encapsulation. The details of how signed integers are interpreted by
the computer (and the compiler), as well as how their properties and operations are implemented, are
encapsulated in the integer data type itself and are thus hidden from us, the users of the data type.
Only those portions of the properties and operations that we need in order to work with integers are
exposed outside of the data type. These portions form the public interface for the Integer data type.

Moreover, encapsulation protects us from making errors. For instance, if we had to do our own
negating by taking Boolean complements and adding 1, we might forget to add 1! The encapsulated
data type takes care of this automatically.

Encapsulation has yet another important feature. Any code that is written using the exposed interface
remains valid even if the internal workings of the Integer data type are changed for some reason, as
long as the interface is not changed. For instance, if we move the code to a computer that stores
integers in one's-complement representation, then the internal procedure for implementing the
operation of negation in the integer data type will have to be changed. However, from the
programmer's point of view, nothing has changed. The code:

x = -16
y = -x

is just as valid as before.

3.2.3 Interfaces

As VB programmers, we must implement encapsulation through the use of software components. For
instance, we can create a software component to encapsulate the Employee abstraction discussed
earlier.

In VB .NET, the methods of an interface are realized as functions. On the other hand, a property, as
we see later in this chapter, is realized as a private variable that stores the property's value together
with a pair of public functions—one to set the variable and one to retrieve the variable. These functions
are sometimes referred to as accessor methods of the property. It is the set of exposed functions
(ordinary methods and accessor methods) that constitute the interface for an abstraction.

In general, a software component may encapsulate and expose more than one abstraction—hence,
more than one interface. For example, in a more realistic setting, we might want a software component
designed to model employees to encapsulate an interface called IIdentification (the initial "I" is
for interface) that is used for identification purposes. This interface might have properties such as
Name, Social Security number, Driver's License number, Age, Birthmarks, and so on. Moreover, the
software component might also encapsulate an interface called IEducation for describing the
employee's educational background. Such an interface might implement properties such as Education
Level, Degrees, College Attended, and so on.

The interface of each abstraction exposed by a software component is also referred to as an interface
of the software component. Thus, the Employee component implements at least two interfaces:
IIdentification and IEducation. Note, however, that the term interface is often used to refer to
the set of all exposed properties and methods of a software component, in which case a component
has only one interface.

Referring to our original Employee abstraction, its interface might consist of the functions shown in
Table 3-1. (Of course, this interface is vastly oversimplified, but it is more than sufficient to illustrate
the concepts.)

 78

Table 3-1. Members of the Employee interface
Type Name

Property FullName: GetFullName(), SetFullName()
Property Address: GetAddress(), SetAddress()
Property EmployeeID: GetEmployeeID(), SetEmployeeID()
Property Salary: GetSalary(), SetSalary()
Method IncSalary()
Method DecSalary()

Using the term interface as a set of functions, while quite common, poses a problem. Just listing the
functions of the interface by name (as done previously) does not provide enough information to call
those functions. Thus, a more useful definition of interface would be the set of signatures of the public
functions of a software component.

To clarify this, let us discuss one of the most important distinctions in object-oriented programming—
the distinction between a function declaration and an implementation of that function.

By way of example, consider the following sorting function:

Function Sort(a() as Integer, iSize as Integer) as Boolean
 For i = 1 to iSize
 For j = i+1 to iSize
 If a(j) < a(i) Then swap a(i), a(j)
 Next j
 Next I
 Sort = True
End Function

The first line in this definition:

Function Sort(a() as Integer, iSize as Integer) as Boolean

is the function declaration. It supplies information on the number and types of parameters and the
return type of the function. The body of the function:

For i = 1 to iSize
 For j = i+1 to iSize
 If a(j) < a(i) Then swap a(i), a(j)
 Next j
Next i
Sort = True

represents the implementation of the function. It describes how the function carries out its intended
purpose.

Note that it is possible to alter the implementation of the function without changing the declaration. In
fact, the current function implementation sorts the array a using a simple selection-sort algorithm, but
we could replace that sorting method with any one of a number of other methods (bubble sort,
insertion sort, quick sort, and so on).

Now consider a client of the Sort function. The client only needs to know the function declaration in
order to use the function. It need not know (and probably doesn't want to know) anything about the
implementation. Thus, it is the function declaration, and not the implementation, that forms the
interface for the function.

 79

The signature of a function is the function name and return type, as well as the names, order, and
types of its parameters. A function declaration is simply a clear way of describing the function's
signature. Note that Microsoft does not consider the return type of a function to be part of the
function's signature. By signature, they mean what is generally termed the function's argument
signature. The reasons for doing this become clearer later in the chapter when we discuss overloading,
although it would have been better (as usual) if they were more careful with their terminology.

Under this more specific definition of interface, the interface for our employee component might be as
follows (in part):

Function GetFullName(lEmpID As Long) As String
Sub SetFullName(lEmpID As Long, sName As String)
. . .
Sub IncSalary(sngPercent As Single)
Sub DecSalary(sngPercent As Single)

3.3 Classes and Objects

Generally speaking, a class is a software component that defines and implements one or more
interfaces. (Strictly speaking, a class need not implement all the members of an interface. We discuss
this later when we talk about abstract members.) In different terms, a class combines data, functions,
and types into a new type. Microsoft uses the term type to include classes.

3.3.1 Class Modules in VB .NET

Under Visual Studio.NET, a VB class module is inserted into a project using the Add Class menu item
on the Project menu. This inserts a new module containing the code:

Public Class ClassName

End Class

Although Visual Studio stores each class in a separate file, this isn't a requirement. It is the
Class...End Class construct that marks the beginning and end of a class definition. Thus, the code
for more than one class as well as one or more code modules (which are similarly delimited by the
Module...End Module construct) can be contained in a single source code file.

The CPerson class defined in the next section is an example of a VB class module.

3.3.2 Class Members

In VB .NET, class modules can contain the following types of members:

Data members

This includes member variables (also called fields) and constants.

Event members

Events are procedures that are called automatically by the Common Language Runtime in
response to some action that occurs, such as an object being created, a button being clicked,
a piece of data being changed, or an object going out of scope.

Function members

 80

This refers to both functions and subroutines. A function member is also called a method. A
class' constructor is a special type of method. We discuss constructors in detail later in this
chapter.

Property members

A property member is implemented as a Private member variable together with a special type
of VB function that incorporates both accessor functions of the property. We discuss the
syntax of this special property function in Section 3.3.5 later in the chapter.

Type members

A class member can be another class, which is then referred to as a nested class.

The following CPerson class illustrates some of the types of members:

Public Class CPerson

 ' -------------
 ' Data Members
 ' -------------
 ' Member variables
 Private msName As String
 Private miAge As Integer

 ' Member constant
 Public Const MAXAGE As Short = 120

 ' Member event
 Public Event Testing()

 ' ----------------
 ' Function Members
 ' ----------------

 ' Method
 Public Sub Test()
 RaiseEvent Testing()
 End Sub

 Property Age() As Integer
 Get
 Age = miAge
 End Get
 Set(ByVal Value As Integer)
 ' Some validation
 If Value < 0 Then
 MsgBox("Age cannot be negative.")
 Else
 miAge = Value
 End If
 End Set
 End Property

 ' Property
 Property Name() As String
 ' Accessors for the property
 Get
 Name = msName

 81

 End Get
 Set(ByVal Value As String)
 msName = Value
 End Set
 End Property

 ' Overloaded constructor
 Overloads Sub New()

 End Sub

 ' Constructor that initializes name
 Overloads Sub New(ByVal sNewName As String)
 msName = sNewName
 End Sub

 Sub Dispose()
 ' Code here to clean up
 End Sub

End Class

3.3.3 The Public Interface of a VB .NET Class

We have seen that, when speaking in general object-oriented terms, the exposed members of a
software component constitute the component's public interface (or just interface). Now, in VB .NET,
each member of a class module has an access type, which may be Public, Private, Friend,
Protected, or Protected Friend. We discuss each of these in detail later in this chapter. Suffice it
to say, a VB .NET class module may accordingly have Public, Private, Friend, Protected, and
Protected Friend members.

Thus, we face some ambiguity in defining the concept of the public interface of a VB .NET class. The
spirit of the term might indicate that we should consider any member that is exposed outside of the
class itself as part of the public interface of the class. This would include the Protected, Friend,
and Protected Friend members, as well as the Public members. On the other hand, some might
argue that the members of the public interface must be exposed outside of the project in which the
class resides, in which case only the Public members would be included in the interface. Fortunately,
we need not make too much fuss over the issue of what exactly constitutes a VB .NET class' public
interface, as long as we remain aware that the term may be used differently by different people.

3.3.4 Objects

A class is just a description of some properties and methods and does not have a life of its own (with
the exception of shared members, which we discuss later). In general, to execute the methods and
use the properties of a class, we must create an instance of the class, officially known as an object.
Creating an instance of a class is referred to as instancing, or instantiating, theclass.

There are three ways to instantiate an object of a VB .NET class. One method is to declare a variable
of the class' type:

Dim APerson As CPerson

and then instantiate the object using the New keyword as follows:

APerson = New CPerson()

We can combine these two steps as follows:

 82

Dim APerson As New CPerson()

or:

Dim APerson As CPerson = New CPerson()

The first syntax is considered shorthand for the second.

3.3.5 Properties

Properties are members that can be implemented in two different ways. In its simplest implementation,
a property is just a public variable, as in:

Public Class CPerson

 Public Age As Integer

End Class

The problem with this implementation of the Age property is that it violates the principle of
encapsulation; anyone who has access to a CPerson object can set its Age property to any Integer
value, even negative integers, which are not valid ages. In short, there is no opportunity for data
validation. (Moreover, this implementation of a property does not permit its inclusion in the public
interface of the class, as we have defined that term.)

The "proper" object-oriented way to implement a property is to use a Private data member along with a
special pair of function members. The Private data member holds the property value; the pair of
function members, called accessors, are used to get and set the property value. This promotes data
encapsulation, since we can restrict access to the property via code in the accessor functions, which
can contain code to validate the data. The following code implements the Age property.

Private miAge As Integer

Property Age() As Integer
 Get
 Age = miAge
 End Get
 Set(ByVal Value As Integer)
 ' Some validation
 If Value < 0 Then
 MsgBox("Age cannot be negative.")
 Else
 miAge = Value
 End If
 End Set
End Property

As you can see from the previous code, VB has a special syntax for defining the property accessors.
As soon as we finish typing the line:

Property Age() As Integer

the VB IDE automatically creates the following template:

Property Age() As Integer
 Get

 83

 End Get
 Set(ByVal Value As Integer)

 End Set
End Property

Note the Value parameter that provides access to the incoming value. Thus, if we write:

Dim cp As New CPerson()
cp.Age = 20

then VB passes the value 20 into the Property procedure in the Value argument.

3.3.6 Instance and Shared Members

The members of a class fall into two categories:

Instance members

Members that can only be accessed through an instance of the class, that is, through an
object of the class. To put it another way, instance members "belong" to an individual object
rather than to the class as a whole.

Shared (static) members

Members that can be accessed without creating an instance of the class. These members are
shared among all instances of the class. More correctly, they are independent of any particular
object of the class. To put it another way, shared members "belong" to the class as a whole,
rather than to its individual objects or instances.

Instance members are accessed by qualifying the member name with the object's name. Here is an
example:

Dim APerson As New CPerson()
APerson.Age = 50

To access a shared member, we simply qualify the member with the class name. For instance, the
String class in the System namespace of the .NET Base Class Library has a shared method called
Compare that compares two strings. Its syntax (in one form) is:

Public Shared Function Compare(String, String) As Integer

This function returns 0 if the strings are equal, -1 if the first string is less than the second, and 1 if the
first string is greater than the second. Since the method is shared, we can write:

Dim s As String = "steve"
Dim t As String = "donna"
MsgBox(String.Compare(s, t)) ' Displays 1

Note the way the Compare method is qualified with the name of the String class.

Shared members are useful for keeping track of data that is independent of any particular instance of
the class. For instance, suppose we want to keep track of the number of CPerson objects in existence
at any given time. Then we write code such as the following:

' Declare a Private shared variable to hold the instance count

 84

Private Shared miInstanceCount As Integer

' Increment the count in the constructor
' (If there are additional constructors,
' this code must be added to all of them.)
Sub new()
 miInstanceCount += 1
End Sub

' Supply a function to retrieve the instance count
Shared Function GetInstanceCount() As Integer
 Return miInstanceCount
End Function

' Decrement the count in the destructor
Overrides Protected Sub Finalize()
 miInstanceCount -= 1
 MyBase.Finalize
End Sub

Now, code such as the following accesses the shared variable:

Dim steve As New CPerson()
MsgBox(CPerson.GetInstanceCount) ' Displays 1
Dim donna As New CPerson()
MsgBox(CPerson.GetInstanceCount) ' Displays 2

3.3.7 Class Constructors

When an object of a particular class is created, the compiler calls a special function called the class'
constructor or instance constructor. Constructors can be used to initialize an object when necessary.
(Constructors take the place of the Class_Initialize event in earlier versions of VB.)

We can define constructors in a class module. However, if we choose not to define a constructor, VB
uses a default constructor. For instance, the line:

Dim APerson As CPerson = New CPerson()

invokes the default constructor of our CPerson class simply because we have not defined a custom
constructor.

To define a custom constructor, we just define a subroutine named New within the class module. For
instance, suppose we want to set the Name property to a specified value when a CPerson object is
first created. Then we can add the following code to the CPerson class:

' Custom constructor
Sub New(ByVal sName As String)
 Me.Name = sName
End Sub

Now we can create a CPerson object and set its name as follows:

Dim APerson As CPerson = New CPerson("fred")

or:

Dim APerson As New CPerson("fred")

 85

Note that because VB .NET supports function overloading (discussed later in this chapter), we can
define multiple constructors in a single class, provided each constructor has a unique argument
signature. We can then invoke any of the custom constructors simply by supplying the correct number
and type of arguments for that constructor.

Note also that once we define one or more custom constructors, we can no longer invoke the default
(that is, parameterless) constructor with a statement such as:

Dim APerson As New CPerson()

Instead, to call a parameterless constructor, we must specifically add the constructor to the class
module:

' Default constructor
Sub New()
 ...
End Sub

3.3.8 Finalize, Dispose, and Garbage Collection

In VB 6, a programmer can implement the Class_Terminate event to perform any clean up procedures
before an object is destroyed. For instance, if an object held a reference to an open file, it might be
important to close the file before destroying the object itself.

In VB .NET, the Terminate event no longer exists, and things are handled quite differently. To
understand the issues involved, we must first discuss garbage collection.

When the garbage collector determines that an object is no longer needed (which it does, for instance,
when the running program no longer holds a reference to the object), it automatically runs a special
destructor method called Finalize. However, it is important to understand that, unlike with the
Class_Terminate event, we have no way to determine exactly when the garbage collector will call the
Finalize method. We can only be sure that it will be called at some time after the last reference to the
object is released. Any delay is due to the fact that the .NET Framework uses a system called
reference-tracing garbage collection, which periodically releases unused resources.

Finalize is a Protected method. That is, it can be called from a class and its derived classes, but it is
not callable from outside the class, including by clients of the class. (In fact, since the Finalize
destructor is automatically called by the garbage collector, a class should never call its own Finalize
method directly.) If a class' Finalize method is present, then it should explicitly call its base class'
Finalize method as well. Hence, the general syntax and format of the Finalize method is:

Overrides Protected Sub Finalize()
 ' Cleanup code goes here
 MyBase.Finalize
End Sub

The benefits of garbage collection are that it is automatic and it ensures that unused resources are
always released without any specific interaction on the part of the programmer. However, it has the
disadvantages that garbage collection cannot be initiated directly by application code and some
resources may remain in use longer than necessary. Thus, in simple terms, we cannot destroy objects
on cue.

We should note that not all resources are managed by the Common Language Runtime. These
resources, such as Windows handles and database connections, are thus not subject to garbage
collection without specifically including code to release the resources within the Finalize method. But,
as we have seen, this approach does not allow us or clients of our class to release resources on

 86

demand. For this purpose, the Base Class Library defines a second destructor called Dispose. Its
general syntax and usage is:

Class classname
 Implements IDisposable

Public Sub Dispose() Implements IDisposable.Dispose
 ' cleanup code goes here
 ' call child objects' Dispose methods, if necessary, here
End Sub

' Other class code

End Class

Note that classes that support this callable destructor must implement the IDisposable interface—
hence the Implements statement just shown. IDisposable has just one member, the Dispose
method.

It is important to note that it is necessary to inform any clients of the class that they must call this
method specifically in order to release resources. (The technical term for this is the manual approach!)

3.4 Inheritance

Perhaps the best way to describe inheritance as it is used in VB .NET is to begin with an example.

The classes in a given application often have relationships to one another. Consider, for instance, our
Employee information application. The Employee objects in the class CEmployee represent the
general aspects common to all employees—name, address, salary, and so on.

Of course, the executives of the company will have different perquisites than, say, the secretaries. So
it is reasonable to define additional classes named CExecutive and CSecretary, each with properties
and methods of its own. On the other hand, an executive is also an employee, and there is no reason
to define different Name properties in the two cases. This would be inefficient and wasteful.

This situation is precisely what inheritance is designed for. First, we define the CEmployee class,
which implements a Salary property and an IncSalary method:

' Employee class
Public Class CEmployee
 ' Salary property is read/write
 Private mdecSalary As Decimal
 Property Salary() As Decimal
 Get
 Salary = mdecSalary
 End Get
 Set
 mdecSalary = Value
 End Set
 End Property
 Public Overridable Sub IncSalary(ByVal sngPercent As Single)
 mdecSalary = mdecSalary * (1 + CDec(sngPercent))
 End Sub
End Class

Next, we define the CExecutive class:

' Executive Class

 87

Public Class CExecutive
 Inherits CEmployee
 ' Calculate salary increase based on 5% car allowance as well
 Overrides Sub IncSalary(ByVal sngPercent As Single)
 Me.Salary = Me.Salary * CDec(1.05 + sngPercent)
 End Sub
End Class

There are two things to note here. First, the line:

Inherits CEmployee

indicates that the CExecutive class inherits the members of the CEmployee class. Put another way, an
object of type CExecutive is also an object of type CEmployee. Thus, if we define an object of type
CExecutive:

Dim ceo As New CExecutive

then we can invoke the Salary property, as in:

ceo.Salary = 1000000

Second, the keyword Overrides in the IncSalary method means that the implementation of IncSalary
in CExecutive is called instead of the implementation in CEmployee. Thus, the code:

ceo.IncSalary

raises the salary of the CExecutive object ceo based on a car allowance. Note also the presence of
the Overridable keyword in the definition of IncSalary in the CEmployee class, which specifies that
the class inheriting from a base class is allowed to override the method of the base class.

Next, we define the CSecretary class, which also inherits from CEmployee but implements a different
salary increase for secretary objects:

' Secretary Class
Public Class CSecretary
 Inherits CEmployee
 ' Secretaries get a 2% overtime allowance
 Overrides Sub IncSalary(ByVal sngPercent As Single)
 Me.Salary = Me.Salary * CDec(1.02 + sngPercent)
 End Sub
End Class

We can now write code to exercise these classes:

' Define new objects
Dim ThePresident As New CExecutive()
Dim MySecretary As New CSecretary()

' Set the salaries
ThePresident.Salary = 1000000
MySecretary.Salary = 30000

' Set Employee to President and inc salary
Debug.Writeline("Pres before: " & CStr(ThePresident.Salary))
ThePresident.IncSalary(0.4)
Debug.WriteLine("Pres after: " & CStr(ThePresident.Salary))

 88

Debug.Writeline("Sec before: " & CStr(MySecretary.Salary))
MySecretary.IncSalary(0.3)
Debug.Writeline("Sec after: " & CStr(MySecretary.Salary))

The output in this case is:

Pres before: 1000000
Pres after: 1450000
Sec before: 30000
Sec after: 39600

The notion of inheritance is quite simple, as put forth in Microsoft's documentation:

If Class B inherits from Class A, then any object of Class B is also an object of Class A and so
includes the public properties and methods (that is, the public interface) of Class A. In this case, Class
A is called the base class and Class B is called the derived class. On the other hand, in general, the
derived class can override the implementation of a member of the base class for its own use.

We have seen in the previous example that inheritance is implemented using the Inherits keyword.

3.4.1 Permission to Inherit

There are two keywords used in the base class definition that affect the ability to inherit from a base
class:

NotInheritable

When this is used to define a class, as in:

Public NotInheritable Class InterfaceExample

the class cannot be used as a base class.

MustInherit

When this is used to define a class, as in:

Public MustInherit Class InterfaceExample

objects of this class cannot be created directly. Objects of a derived class can be created,
however. In other words, MustInherit classes can be used as base classes and only as
base classes.

3.4.2 Overriding

There are several keywords that control whether a derived class can override an implementation in the
base class. These keywords are used in the declaration of the member in question, rather than in the
class definition:

Overridable

Allows but does not require a member to be overridden. Note that the default for a Public
member is NotOverridable. Here is an example:

Public Overridable Sub IncSalary()

 89

NotOverridable

Prohibits overriding of the member. This is the default for Public members of a class.

MustOverride

Must be overridden. When this keyword is used, the member definition is restricted to just the
declaration line, with no implementation and no End Sub or End Function line. For example:

Public MustOverride Sub IncSalary()

Note also that when a class module contains a MustOverride member, then the class itself
must be declared as MustInherit.

Overrides

Unlike the other modifiers, this modifier belongs in the derived class and indicates that the
modified member is overriding a base class member. For example:

Overrides Sub IncSalary()

3.4.3 Rules of Inheritance

In many object-oriented languages, such as C++, a class can inherit directly from more than one base
class. This is referred to as multiple inheritance . VB .NET does not support multiple inheritance, and
so a class can inherit directly from at most one other class. Thus, code such as the following is not
permitted:

' Executive Class
Public Class CExecutive 'INVALID
 Inherits CEmployee
 Inherits CWorker
 . . .
End Class

On the other hand, Class C can inherit from Class B, which, in turn, can inherit from Class A, thus
forming an inheritance hierarchy. Note also that a class can implement multiple interfaces through the
Interface keyword. We discuss this issue later in this chapter.

3.4.4 MyBase, MyClass, and Me

The keyword MyBase provides a reference to the base class from within a derived class. If you want to
call a member of the base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived class
also has a member of the same name.

The MyBase keyword can be used to call the constructor of the base class in order to instantiate a
member of that class, as in:

MyBase.New(...)

Note that MyBase cannot be used to call Private class members.

 90

Visual Basic looks for the most immediate version in parent classes of the procedure in question. Thus,
if Class C derives from Class B, which derives from Class A, a call in Class C to:

MyBase.AProc

first looks in Class B for a matching procedure named AProc. If none is found, then VB looks in Class
A for a matching procedure. (By matching, we mean a method with the same argument signature.)

The keyword MyClass provides a reference to the class in which the keyword is used. It is similar to
the Me keyword, except when used to call a method. To illustrate the difference, consider a class
named Class1 and a derived class named Class1Derived. Note that each class has an IncSalary
method:

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _
 As Single
 IncSalary = sSalary * CSng(1.1)
 End Function

 Public Sub ShowIncSalary(ByVal sSalary As Single)
 MsgBox(Me.IncSalary(sSalary))
 MsgBox(MyClass.IncSalary(sSalary))
 End Sub

End Class

Public Class Class1Derived
 Inherits Class1
 Public Overrides Function IncSalary(ByVal sSalary As Single) _
 As Single
 IncSalary = sSalary * CSng(1.2)
 End Function
End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()
Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1
c1var.IncSalary(10000) ' Shows 11000, 11000

c1var = c2
c1var.IncSalary(10000) ' Shows 12000, 11000

The first call to IncSalary is made using a variable of type Class1 that refers to an object of type
Class1. In this case, both of the following calls:

Me.IncSalary
MyClass.IncSalary

return the same value, because they both call IncSalary in the base class Class1.

 91

However, in the second case, the variable of type Class1 holds a reference to an object of the derived
class, Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas MyClass
still refers to the base class Class1 wherein the keyword MyClass appears. Thus,

Me.IncSalary

returns 12000 whereas the following:

MyClass.IncSalary

returns 10000.

3.5 Interfaces, Abstract Members, and Classes

We have alluded to the fact that a class may implement all, some, or none of the members of the
interfaces that it defines. Any interface member that does not have an implementation is referred to as
an abstract member. The purpose of an abstract member is to provide a member signature (a
template, if you will) that can be implemented by one or more derived classes, generally in different
ways.

Let us clarify this with an example. Recall from our discussion of inheritance that the CEmployee class
defines and implements an IncSalary method that increments the salary of an employee. Recall also
that the CExecutive and CSecretary derived classes override the implementation of the IncSalary
method in the base class CEmployee.

Suppose that, in a more complete employee model, there is a derived class for every type of
employee. Moreover, each of these derived classes overrides the implementation of the IncSalary
method in the base class CEmployee. In this case, the implementation of IncSalary in the base class
will never need to be called! So why bother to give the member an implementation that will never be
used?

Instead, we can simply provide an empty IncSalary method, as shown here:

' Employee class
Public Class CEmployee

 . . .

 Public Overridable Sub IncSalary(ByVal sngPercent As Single)
 End Sub

End Class

Alternatively, if we want to require that all derived classes implement the IncSalary method, we can
use the MustOverride keyword, as shown here:

' Employee class
Public MustInherit Class CEmployee

 . . .

 Public MustOverride Sub IncSalary(ByVal sngPercent As Single)

End Class

As mentioned earlier, when using MustOverride, there is no End Sub statement associated with the
method. Note also that when using the MustOverride keyword, Microsoft requires that the class be

 92

declared with the MustInherit keyword. This specifies that we cannot create objects of type
CEmployee.

In each of the previous cases, the IncSalary member of the base class CEmployee is an abstract
member.

Any class that contains at least one abstract member is termed an abstract class. (Thus, the
CEmployee class as defined earlier is an abstract class.) This terminology comes from the fact that it
is not possible to create an object from an abstract class because at least one of the object's methods
would not have an implementation.

There are also situations where we might want to define a class in which all members are abstract. In
other words, this is a class that only defines an interface. We might refer to such a class as a pure
abstract class, although this terminology is not standard.

For example, imagine a Shape class called CShape that is designed to model the general properties
and actions of geometric shapes (ellipses, rectangles, trapezoids, etc.). All shapes need a Draw
method, but the implementation of the method varies depending on the type of shape—circles are
drawn quite differently than rectangles, for example. Similarly, we want to include methods called
Rotate, Translate, and Reflect, but, as with the Draw method, each of these methods require a
different implementation based on the type of shape.

Thus, we can define the CShape class in either of the following ways:

Public Class Class2

 Public Overridable Sub Draw()
 End Sub

 Public Overridable Sub Rotate(ByVal sngDegrees As Single)
 End Sub

 Public Overridable Sub Translate(ByVal x As Integer, _
 ByVal y As Integer)
 End Sub

 Public Overridable Sub Reflect(ByVal iSlope As Integer, _
 ByVal iIntercept As Integer)
 End Sub

End Class

or:

Public MustInherit Class CShape

 Public MustOverride Sub Draw()
 Public MustOverride Sub Rotate(ByVal sngDegrees As Single)
 Public MustOverride Sub Translate(ByVal x As Integer, _
 ByVal y As Integer)
 Public MustOverride Sub Reflect(ByVal iSlope As Integer, _
 ByVal iIntercept As Integer)

End Class

Now we can define derived classes such as CRectangle, CEllipse, CPolygon, and so on. Each of
these derived classes will (or must, in the latter case) implement the members of the base class
CShape. (We won't go into the details of such an implementation here, since it is not relevant to our
discussion.)

 93

3.5.1 Interfaces Revisited

We have seen that interfaces can be defined in class modules. VB .NET also supports an additional
method of defining an interface, using the Interface keyword. The following example defines the
IShape interface:

 Public Interface IShape
 Sub Draw()
 Sub Rotate(ByVal sngDegrees As Single)
 Sub Translate(ByVal x As Integer, ByVal y As Integer)
 Sub Reflect(ByVal iSlope As Integer, _
 ByVal iIntercept As Integer)
 End Interface

Note that we cannot implement any of the members of an interface defined using the Interface
keyword, that is, not within the module in which the interface is defined. However, we can implement
the interface using an ordinary class module. Note the use of the Implements statement (which was
also available in VB 6, but could be applied only to external interfaces):

Public Class CRectangle

' Implement the interface IShape
Implements IShape

Public Overridable Sub Draw() Implements IShape.Draw
 ' code to implement Draw for rectangles
End Sub

Public Overridable Sub Spin() Implements IShape.Rotate
 ' code to implement Rotate for rectangles
End Sub

End Class

Note also the use of the Implements keyword in each function that implements an interface member.
This keyword allows us to give the implementing function any name—it does not need to match the
name of the method (see the Spin method earlier in this section, which implements the IShape
interface's Rotate method). However, it is probably less confusing (and better programming practice)
to use the same name.

The main advantage of using the Implements keyword approach to defining an interface is that a
single class can implement multiple interfaces, whereas VB .NET does not permit a single class to
inherit directly from multiple base classes. On the other hand, the main disadvantage of the
Interface keyword approach is that no implementation is possible in the module that defines the
interface. Thus, all interface members must be implemented in every class that implements the
interface. This can mean code repetition if an interface member has the same implementation in more
than one implementing class.

3.6 Polymorphism and Overloading

Fortunately, we don't need to go into the details of polymorphism and overloading, which is just as well,
because they tend to be both confusing and ambiguous. For instance, some computer scientists say
that overloading is a form of polymorphism, whereas others say it is not. We will discuss only those
issues that are directly relevant to the .NET Framework.

3.6.1 Overloading

 94

Overloading refers to an item being used in more than one way. Operator names are often overloaded.
For instance, the plus sign (+) refers to addition of integers, addition of singles, addition of doubles,
and concatenation of strings. Thus, the plus symbol (+) is overloaded. It's a good thing, too; otherwise,
we would need separate symbols for adding integers, singles, and doubles.

Function names can also be overloaded. For instance, the absolute value function, Abs, can take an
integer parameter, a single parameter, or a double parameter. Because the name Abs represents
several different functions, it is overloaded. In fact, if you look at the documentation for the Abs
member of the Math class (in the system namespace of the Base Class Library), you will find the
following declarations, showing the different functions using the Abs name:

Overloads Public Shared Function Abs(Decimal) As Decimal
Overloads Public Shared Function Abs(Double) As Double
Overloads Public Shared Function Abs(Integer) As Short
Overloads Public Shared Function Abs(Integer) As Integer
Overloads Public Shared Function Abs(Long) As Long
Overloads Public Shared Function Abs(SByte) As SByte
Overloads Public Shared Function Abs(Single) As Single

Note the use of the Overloads keyword, which tells VB that this function is overloaded.

Specifically, a function name is overloaded when two defined functions use the same name but have
different argument signatures. For instance, consider a function that retrieves a current account
balance. The account could be identified either by the person's name or by the account number. Thus,
we might define two functions, each called GetBalance:

Overloads Function GetBalance(sCustName As String) As Decimal
Overloads Function GetBalance(sAccountNumber As Long) As Decimal

Note also that VB .NET permits function overloading only because the argument signatures of the two
functions are different, so that no ambiguity can arise. The function calls:

GetBalance("John Smith")
GetBalance(123456)

are resolved by the compiler without difficulty, based on the data type of the argument. This type of
overloading is often referred to as overloading the function GetBalance. On the other hand, there are
two different functions here, so it seems more appropriate to say that the function name is being
overloaded. Overloading is very common and not exclusive to object-oriented programming.

3.6.2 Polymorphism

The term polymorphism means having or passing through many different forms. In the .NET
Framework, polymorphism is tied directly to inheritance. Again, let us consider our Employee example.
The function IncSalary is defined in three classes: the base class CEmployee and the derived classes
CExecutive and CSecretary. Thus, the IncSalary function takes on three forms. This is polymorphism,
VB .NET style.

In case you are interested, many computer scientists would not consider this to be polymorphism.
They would argue that the function IncSalary takes on only one form. It is the implementation that
differs, not the function. They would refer to the situation described here for IncSalary as function
overloading. The main point here is that there is a lot of confusion as to how Microsoft and others use
the terms overloading and polymorphism, so you should be on guard when reading documentation.

 95

3.7 Scope and Accessibility in Class Modules

The notion of scope in class modules is more involved than it is in standard modules. As far as local
variables (block-level and procedure-level) are concerned, there is no difference—we have block
scope and procedure-level scope.

However, variables declared in the Declarations section of a class module can be assigned one of the
following access modifiers:

• Public
• Private
• Friend
• Protected
• Protected Friend

(For standard modules, only Public, Private, and Friend are allowed.)

Note that class modules themselves can be declared with any one of the three access modifiers:
Public, Private, or Friend (Protected is not allowed). When a class module declaration
specifies one of these access modifiers, this simply restricts all of its members to that level of access,
unless a member's access is further restricted by the access modifier on the member declaration itself.
For instance, if the class has Friend access, no member can have Public access. (Put another way,
the Public access is overridden by the Friend class access.)

On the other hand, all four access modifiers apply to members of the class module?that is, to variable,
constant, enum, and procedure declarations within the class module.

The complications come because there are actually three types of access to a class member, and
these generally have different scopes. To clarify, let's make the following definitions, which are not
standard but descriptive. For example, consider a variable declaration in the Declaration section of a
class module named Class1:

AccessModifier classvariable As Integer

This variable can be accessed in the following ways:

Direct access

Refers to accessing the member without any qualification, as in:

classvariable = 100

When attempting to access a variable using direct access (that is, without qualification), the
variable's scope takes one of three forms:

• The declaring class only
• The declaring class and its derived classes within the declaring project only
• The declaring class and its derived classes, in any project that holds a reference to

the declaring project

Class/object access

Refers to accessing the member through qualification, either with the class name or the name
of an object of that class.

 96

As we have discussed, if a member variable is declared using the Shared keyword, then it is
shared by all objects in the class. More accurately, the member exists independently of any
object of the class. In this case, the member can be accessed (within its scope) through
qualification by the class name, as in:

Class1.classvariable = 100

Note that the member can also be accessed through qualification by an object name, but this
has the same effect as access through qualification by the class name—there is only one copy
of the member.

If the member is declared without using the Shared keyword, then class/object access refers
to accessibility through qualification by the name of an existing object, as in:

Dim c As New Class1
c.classvariable = 100

The scope for class/object access can be one of the following:

• The declaring class only
• The declaring project
• The declaring project and any external software component that holds a reference to

the declaring project

Table 3-2 describes the effects of the various access modifiers.

Table 3-2. Access modifiers in class modules
 Direct-access scope Class/object scope

Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

Unfortunately, it does not seem possible to make a simple statement about the effect of the access
modifiers Friend and Protected independently. It would have been much clearer to have separate
sets of access modifiers for direct-access scope and class/object scope, instead of intertwining the
concepts as shown in Table 3-2. Oh well.

 97

Chapter 4. The .NET Framework: General Concepts

In this chapter, we discuss some of the main concepts in the .NET Framework. This is intended as a
general overview, just to give you the "lay of the .NET land," so to speak. For more information, see
Thuan Thai and Hoang Q. Lam's .NET Framework Essentials (O'Reilly, 2001).

4.1 Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a
namespace is a logical grouping of types for the purpose of identification. For example, imagine that in
a certain business there is an executive named John Smith, a secretary named John Smith, and a
custodian named John Smith.

In this case, the name John Smith is ambiguous. When the paymaster stands on a table and calls out
the names of people to receive their pay checks, the executive John Smith won't be happy if he rushes
to the table when the paymaster calls out his name and the envelope contains the custodian John
Smith's pay check.

To resolve the naming ambiguity, the business can simply define three namespaces: Executive,
Secretarial, and Custodial. Now the three individuals can be unambiguously referred to by their fully
qualified names:

• Executive.John Smith
• Secretarial.John Smith
• Custodial.John Smith

The .NET Framework Class Library (FCL), which we look at in more detail in Chapter 5, consists of
several thousand classes and other types (such as interfaces, structures, and enumerations) that are
divided into over 90 namespaces. These namespaces provide basic system services, such as:

• Basic and advanced data types and exception handling (the System namespace)
• Data access (the System.Data namespace)
• User-interface elements for standard Windows applications (the System.Windows.Forms

namespace)
• User-interface elements for web applications (the System.Web.UI namespace)

In fact, the VB .NET language itself is implemented as a set of classes belonging to the
Microsoft.VisualBasic namespace. (The C# and JScript languages are also implemented as a set of
classes in corresponding namespaces.)

For information on accessing the members of a namespace, see Section 4.5 later in this chapter.

Namespaces are not necessarily unique to the Framework Class Library; you can also create your
own namespaces by using the Namespace statement at the beginning of a code file.

4.2 Common Language Runtime (CLR), Managed Code, and Managed
Data

The Common Language Runtime (CLR) is an environment that manages code execution and provides
application-development services. Compilers such as VB .NET expose the CLR's functionality to
enable developers to create applications. Code that is created under this environment is called
managed code . Note that COM components are not managed code, although they (as well as other
unmanaged code) can be used in applications that are built under the CLR.

 98

The output of a compiler includes metadata, which is information that describes the objects that are
part of an application, such as:

• Data types and their dependencies
• Objects and their members
• References to required components
• Information (including versioning information) about components and resources that were

used to build the application

Metadata is used by the CLR to do such things as:

• Manage memory allocations
• Locate and load class instances
• Manage object references and perform garbage collection
• Resolve method invocations
• Generate native code
• Make sure that the application has the correct versions of necessary components and

resources
• Enforce security

The metadata in a compiled software component makes the component self-describing. This implies
that components, even those written in another language, can interact with the given component
directly.

Objects that are managed by the CLR are referred to as managed data. (It is also possible to use
unmanaged data in applications.)

4.3 Managed Execution

Managed execution is the name given for the process of creating applications under the .NET
Framework. The steps involved are as follows:

1. Write code using one or more .NET compilers. Note that for software components to be
useable by components that are written in other languages, these components must be written
using only language features that are part of the Common Language Specification (CLS).

2. Compile the code. The compiler translates source code to Microsoft Intermediate Language
(MSIL) and generates the necessary metadata for the application.

3. Run the code. When code is executed, the MSIL is compiled into native code (which is CPU-
specific code that runs on the same computer architecture as the compiler) by a Just In Time
(JIT) compiler. If required, the JIT checks the code for type safety. If the type-safety check fails,
an exception is thrown.

Code that cannot access invalid memory addresses or perform other illegal operations that may result
in an application crash is called type-safe code. Code that is verified to be type-safe by the JIT is
called verifiably type-safe code. Due to limitations in the verification process, code can be type-safe
and yet not be verifiably type-safe.

4.4 Assemblies

The purpose of an assembly is to specify a logical unit, or building block, for .NET applications that
encapsulate certain properties.

The term assembly refers to both a logical construct and a set of physical files. To draw an analogy on
the logical side, we might use the term neighborhood to refer to a zip code, a neighborhood name, and
a list of street addresses. On the physical side, a neighborhood consists of the actual houses that are

 99

located at those addresses. Thus, we can speak of physically moving (i.e., deploying) the
neighborhood.

A .NET application consists of one or more assemblies. Logically speaking, an assembly is just a set
of specifications. In particular:

• An assembly specifies the (MSIL) code that is associated with the assembly. This code lies in
a Portable Executable (PE) file. (PE files are the traditional file types for Microsoft's code, but
the format is extended for .NET applications.)

• An assembly specifies security permissions for itself, if any.
• An assembly specifies a list of data types and provides scoping for those types. Every data

type in a .NET application must specify the assembly to which it belongs. The scoping
provided by an assembly means that different types may have the same name, as long as
they belong to different assemblies and can therefore be distinguished by means of the
assembly to which they belong. Microsoft refers to this by saying that an assembly provides
atype boundary.

• An assembly specifies rules for resolving external types and external references, including
references to other assemblies. In this way, assemblies form a reference scope boundary.
Included in this information are any version dependencies for the external references.

• An assembly specifies which of its parts are exposed outside the assembly and which are
private to the assembly itself.

In addition to these specifications listed, an assembly is an object (or logical unit) that possesses
certain properties:

• An assembly has version properties. This includes a major and minor version number, as well
as a revision and build number. Indeed, an assembly is the smallest unit that has versioning
properties. Put another way, all elements of an assembly (types and resources) are versioned
as a unit—they are assigned the version numbers of the assembly to which they belong. In
other words, an assembly is a versioning unit.

• An assembly forms a deployment unit. More specifically, at any given time, a .NET application
only needs access to the assemblies that specify the code under execution. Other assemblies
that make up the application need not be present if the code they specify is not currently
needed for execution. These assemblies can be retrieved upon demand, so that the
downloading of applications can be more efficient.

Finally, we note that multiple versions of a single assembly can be run at the same time, on the same
system, or even in the same process. This is referred to as side-by-side execution.

The specifications in an assembly are collectively referred to as the assembly's manifest. The data in
the manifest is also called metadata. Specifically, the manifest contains:

• The name of the assembly
• Version information for the assembly
• Security information for the assembly
• A list of all files that are part of the assembly
• Type reference information for the types specified in the assembly
• A list of other assemblies that are referenced by the assembly
• Custom information, such as a user-friendly assembly title, description, and product

information (company name, copyright information, and so on)

Physically, an assembly consists of one or more files—files that contain code, as well as resources,
such as bitmaps. The assembly's manifest can be a separate file or part of another file in the assembly.

 100

4.5 Assemblies and VB .NET

To a VB .NET programmer, an assembly is similar to a traditional DLL or EXE file, except that it
contains additional information, such as reference and type information (which in COM was often
contained in a separate OLB or TLB file, called a type library). When a VB .NET application is
compiled, the compiler creates an assembly for the target EXE or DLL.

In the .NET environment, namespaces are part of assemblies. An assembly can contain many
namespaces, and namespaces can be nested.

For instance, the System namespace is the fundamental namespace in the .NET environment. This is
not the time to go into details, but one example will be useful. The System namespace identifies the
Array class (Microsoft likes to say that the namespace contains classes.) One of the members of the
Array class is the Copy method, which copies a portion of one array to another array. Thus, we can
write code such as the following:

Imports System ' Optional since System is always imported
Dim array1() As Integer = {1, 2, 3, 4}
Dim array2(3) As Integer
Array.Copy(array1, array2, 3)

To use an existing assembly in a VB .NET project, you must do two things:

• Add a reference to the assembly to your project. There are two exceptions to this rule,
however. A reference to the assembly containing the System namespace (mscorlib.dll) is
added automatically, as is a reference to the assembly containing the language being used
(for VB .NET, this is Microsoft.VisualBasic.dll).

• Access the member or members of the namespace, as described later in this section.

To access a member of a namespace, you can use its fully qualified name. For example, to create an
instance of the Timers class, which is found in the System.Timers namespace, you can use a code
fragment like the following:

Dim oTimer As New System.Timers.Timer(2000)

Since using fully qualified names tends to be relatively cumbersome, you can include an Imports
statement at the beginning of a code file, before any references to variables or classes. Its syntax is:

Imports [aliasname =] namespace

where aliasname is an optional alias for the namespace, and namespace is its fully qualified name.
For example, if you import the System.Timers namespace as follows:

Imports System.Timers

you do not have to qualify a reference to the Timer class, which can be instantiated as follows:

Dim oTimer As New Timer(2000)

In the event that there is a naming conflict (either two namespaces have identically named types, or a
named type conflicts with a name in your project), you can specify an alias for the namespace, as
follows:

Imports TI = System.Timers

and then instantiate a Timer object as follows:

 101

Dim oTimer As New TI.Timer(2000)

If you're using the Visual Basic command-line compiler, you have
to explicitly import the Microsoft.VisualBasic namespace, or your
code will not compile. If you're using Visual Studio, VB's language
elements are accessed automatically without your having to
import the namespace.

 102

 103

Chapter 5. The .NET Framework Class Library

VB .NET is about classes, classes, and more classes. Even something as simple as a string is
implemented in a class (the String class of the System namespace). As we mentioned in Chapter 4,
the .NET Framework defines an extensive network of classes and namespaces called the Framework
Class Library (FCL). This consists of a set of namespaces called the Base Class Library (BCL) that
provide basic system services (like the System namespace, whose classes define .NET data types,
provide exception handling, and handle garbage collection, among other things). It also includes
additional namespaces, such as System.Data, System.Windows.Forms, and System.Web.UI, which
provide application services. In total, there are over 90 namespaces containing several thousand
classes, interfaces, structures, enumerations, and other items (such as delegates) in the .NET
Framework Class Library.

The System namespace is at the top of the namespace hierarchy, and the Object class is at the top of
the object hierarchy. All types in the .NET Framework Class Library derive from the Object class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for its description.
In this chapter, we provide just a brief introduction and some examples. This should prepare you to
dive into the Microsoft Class Library documentation. Note also that the reference portion of this book,
Chapter 8, documents selected language elements from the Base Class Library that seem
particularly useful to VB programmers. For more on which classes are included in the reference
section, see its introduction.

Before becoming intimidated by the size of the Framework Class Library, we should also keep in mind
that VB .NET provides wrappers for much of the Base Class Library in particular, so we can often just
call a VB function rather than resort to accessing the classes in the Base Class Library directly. More
generally, while the class library does have much to offer a VB programmer and should not be ignored,
it can be studied and used on an "as needed" basis.

Let us illustrate a simple case in which the BCL has something to offer. We mentioned in Chapter 2
that the built-in VB data types are wrappers for a corresponding BCL class (for reference types) or
structure (for value types). However, the Visual Basic language typically does not implement all of the
members of the BCL class. For instance, if we want to verify that a user has entered a number that lies
within the range of type Integer, we can use code such as the following:

Dim s As String
Dim i As Integer
s = InputBox("Enter an integer")
If IsNumeric(s)
 If (CDbl(s) >= i.MinValue) And (CDbl(s) <= i.MaxValue) Then
 i = CInt(s)
 Else
 Debug.WriteLine("Invalid number")
 End If
Else
 Debug.WriteLine("Non-numeric value")
End If

Because the VB Integer data type is a wrapper for the BCL's Int32 structure, the MinValue and
MaxValue properties of the Int32 data type are accessible to the Integer variable i. Incidentally,
because the MaxValue and MinValue members are shared, we could also have written:

If IsNumeric(s)
 If (CDbl(s) >= Integer.MinValue) _
 And (CDbl(s) <= Integer.MaxValue) Then

 104

which, in my opinion, is more readable.

In order to prevent a compiler error when compiling this code with Option Strict On, we've converted
the String s to a Double before comparing its value with the Integer class's MinValue and MaxValue
properties. This is because a Double is the least restrictive numeric data type, and we want to be sure
that the numeric equivalent of the String s is within the range of a more restrictive numeric (integer)
data type.

5.1 The System Namespace

The System namespace contains classes for such broad ranging things as:

• Data types
• Data type conversions
• Method-parameter manipulation
• Events and event handlers
• Mathematics
• Program invocation
• Application-environment management

5.1.1 Data Type Conversion

To illustrate data type conversion, the System namespace defines a class called Convert. If you check
the documentation, you'll find that one of the methods of the Convert class is ToBoolean. The
documentation lists the following for ToBoolean:

Overloads Public Shared Function ToBoolean(String) As Boolean
Overloads Public Shared Function ToBoolean(Double) As Boolean
Overloads Public Shared Function ToBoolean(Single) As Boolean
Overloads Public Shared Function ToBoolean(Char) As Boolean
Overloads Public Shared Function ToBoolean(Byte) As Boolean
Overloads Public Shared Function ToBoolean(Object) As Boolean
Overloads Public Shared Function ToBoolean(Boolean) As Boolean
Overloads Public Shared Function ToBoolean(Long) As Boolean
Overloads Public Shared Function ToBoolean(Integer) As Boolean

As you can see, there are many ToBoolean functions?each one with a different argument signature?to
take care of converting various data types to Boolean.

Now, just for exercise, we can write:

Dim s As String
Dim b As Boolean
s = "false"
b = System.Convert.ToBoolean(s)
msgbox(b)

Because the System namespace is always available (or if we are programming outside of Visual
Studio, we can import it using the Imports statement), we can omit the System qualifier and write:

b = Convert.ToBoolean(s)

Of course, we can also use the built-in VB .NET function CBool.

 105

The Convert class contains methods for converting data to the standard Visual Basic data types, as
well as to the data types supported by the .NET Framework but not wrapped by Visual Basic, such as
the unsigned-integer data types. The most important of these methods are shown in Table 5-1.

Table 5-1. Members of the System.Convert class
Method Description

ToBoolean Converts a value to a Boolean
ToByte Converts a value to a Byte
ToChar Converts a value to a Char
ToDateTime Converts a value to DateTime (Date in Visual Basic)
ToDecimal Converts a value to Decimal
ToDouble Converts a value to Double
ToInt16 Converts a value to Int16 (Short in Visual Basic)
ToInt32 Converts a value to Int32 (Integer in Visual Basic)
ToInt64 Converts a value to Int64 (Long in Visual Basic)
ToSByte Converts a value to SByte, the unsigned-byte data type in the BCL
ToSingle Converts a value to Single
ToString Converts a value to String
ToUInt16 Converts a value to UInt16, an unsigned 16-bit integer
ToUInt32 Converts a value to UInt32, an unsigned 32-bit integer
ToUInt64 Converts a value to UInt64, an unsigned 64-bit integer

5.1.2 The Array Class

The Array class contains useful methods for dealing with arrays. For instance, the Array object has a
Sort method (at last) that sorts the elements of an array. Here is an example:

Sub sortArray()
Dim i As Integer
Dim intArray() As Integer = {9, 8, 12, 4, 5}
For i = 0 To 4
 console.WriteLine(CStr(intArray(i)))
Next
Array.Sort(intarray)
Console.WriteLine("Sorted:")
For i = 0 To 4
 console.WriteLine(intArray(i))
Next
End Sub

The output is:

9
8
12
4
5
Sorted:
4
5
8
9
12

 106

Some of the more important methods of the Array class are shown in Table 5-2.

Table 5-2. Some members of the System.Array class
Method Description

BinarySearch Searches a sorted one-dimensional array for a value
IndexOf Returns the first occurrence of a particular value in a one-dimensional array
LastIndexOf Returns the last occurrence of a particular value in a one-dimensional array

Reverse Reverses the order of the elements in a one-dimensional array or a portion of a one-
dimensional array

Sort Sorts a one-dimensional array

5.1.3 The Math Class

The Math class has a number of mathematical-function methods (such as trigonometric functions), as
well as some more useful methods, such as Max and Min. Therefore, we can just write:

MsgBox(Math.Max(4,7))

Table 5-3 shows the members of the Math class.

Table 5-3. The members of the Math class
Topic Description

Abs function Absolute value
Acos function Arccosine
Asin function Arcsine
Atan function Arctangent; returns the angle whose tangent is a specified number

Atan2 function Arctangent; returns the angle whose tangent is the quotient of two specified
numbers

Ceiling function Returns the smallest integer greater than or equal to the argument number
Cos function Cosine
Cosh function Hyperbolic cosine
E field The natural number e
Exp function Exponential function
Floor function Returns the largest integer less than or equal to the argument number
IEEERemainder
function Returns the remainder after dividing x by y

Log function Natural (base e) logarithm
Log10 function Common (base 10) logarithm
Max function Maximum
Min function Minimum

Mod operator Returns the modulus, that is, the remainder when number1 is divided by
number2

Pi field Pi, the ratio of the circumference of a circle to its diameter
Pow function Generalized exponential function
Randomize statement Initializes the random number generator
Rnd function Returns a random number
Round function Rounds a given number to a specified number of decimal places

 107

Sign function Determines the sign of a number
Sin function Sine
Sinh function Hyperbolic sine
Sqrt function Square root
Tan function Tangent
Tanh function Hyperbolic tangent

5.1.4 The String Class

The String class implements a collection of methods for string manipulation, including methods for
locating substrings, concatenation, replacement, padding, trimming, and so on. One interesting
method is Insert, which inserts a new string into an existing string.

The VB .NET String data type is equivalent to the System.String class, so we can apply the methods
of System.String directly to VB strings, as in:

Dim s As String = "To be to be"
msgbox(s.Insert(6, "or not "))

This displays the message "To be or not to be." Table 5-4 shows the members of the String class.

Table 5-4. The members of the String class
Topic Description

Asc, AscW functions
Returns an Integer representing the character code for the first
character of the string passed to it. All other characters in the string
are ignored.

Chr, ChrW functions Returns the character represented by the character code.

Filter function Produces an array of matching values from an array of source
values that either match or do not match a given filter string.

Format function Allows you to use either predefined or user-defined formats to create
various ways to output string, numeric, and date/time data.

FormatCurrency,
FormatNumber, FormatPercent
functions

Used to format currency, numbers, and percentages.

FormatDateTime function Formats a date or time expression based on the computer's regional
settings.

GetChar function Returns the Char that is at a given position index within a given
string.

InStr function Finds the starting position of one string within another.

InstrRev function Determines the starting position of a substring within a string by
searching from the end of the string to its beginning.

Join function Concatenates an array of values into a delimited string using a
specified delimiter.

LCase function Converts a string to lowercase.
Left function Returns a string containing the leftmost length characters of string.

Len function Counts the number of characters within a string or the size of a
given variable.

Like operator
If string matches pattern, results in True; otherwise, results in
False.

LTrim function The Me operator represents the current instance of a class from
within the class module. (Since a form is a class, this includes forms

 108

as well.)
Mid function Returns a substring of a specified length from a given string.
Mid statement Replaces section of a string with characters from another string.

Replace function Replaces a given number of instances of a specified substring in
another string.

Right function Returns a string containing the rightmost length characters of string.
RTrim function Removes any trailing spaces from stringexp.
Space function Creates a string containing number spaces.
Split function Parses a single string containing delimited values into an array.

StrComp function Determines whether two strings are equal and, if not, which of the
two strings has the greater value.

StrConv function Performs special conversions on a string.

StrDup function Returns a string that consists of the first character of string
duplicated a number of times.

StrReverse function
Returns a string that is the reverse of the string passed to it. For
example, if the string "and" is passed to it as an argument,
StrReverse returns the string "dna."

Trim function Removes both leading and trailing spaces from a given string.
UCase function Converts a string to uppercase.

5.2 Other Namespaces

Nested just below the System namespace are a number of second-level namespaces, which contain
such classes as:

System.CodeDOM

Contains classes representing the elements and structure of a source code document.

System.Collections

Contains interfaces and classes that define various collections of objects, such as lists,
queues, arrays, hashtables, and dictionaries.

System.ComponentModel

Contains classes that are used to implement the runtime and design-time behavior of
components and controls.

System.Configuration

Contains classes that allow the creation of custom installers for software components.

System.Data

Consists mostly of the classes that constitute the ADO.NET architecture and are used for
database connectivity.

System.Diagnostics

Contains classes that allow debugging of applications and code tracing.

System.DirectoryServices

 109

Contains classes that provide access to the Active Directory from managed code.

System.Drawing

Contains classes that provide access to GDI+ basic graphics functionality. (More advanced
functionality is provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.)

System.IO

Contains classes that allow synchronous and asynchronous reading from and writing to data
streams and files.

System.Net

Contains classes that provide a simple programming interface to many of the common
network protocols, such as FTP and HTTP. (The System.Net.Sockets namespace provides
lower-level network access control.)

System.Reflection

Contains classes and interfaces that provide a managed view of loaded types, methods, and
fields, with the ability to create and invoke types dynamically.

System.Resources

Contains classes for managing resources (culture-specific resources and resource files).

System.Security

Contains classes that provide access to the underlying structure of the .NET Framework
security system.

System.ServiceProcess

Contains classes that allow us to install and run services. (Services are long-running
executables that run without a user interface.)

System.Text

Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as
well as abstract base classes for converting blocks of characters to and from blocks of bytes,
and more.

System.Text.RegularExpressions

Contains classes that provide access to the .NET Framework regular expression engine.

System.Threading

Provides classes and interfaces that enable multithreaded programming.

System.Timers

 110

Contains classes that provide the Timer component, which allows you to raise an event on a
specified interval.

System.Web and related namespaces

Contain classes and interfaces that enable browser/server communication and that allow you
to develop ASP.NET applications and web services.

System.Windows.Forms

Contains classes for creating Windows-based applications that take full advantage of the rich
user-interface features available in the Microsoft Windows operating system. In this
namespace, you will find the Form class and many other controls that can be added to forms
to create user interfaces.

System.Xml

Contains classes that provide standards-based support for processing XML.

Let's take a look at some of these other classes in the BCL.

5.2.1 System.Collections

This namespace contains classes for implementing a variety of collection types, such as stacks and
queues. As you may know, a queue is a first-in, first-out data structure. The following code illustrates
the use of the Queue class:

Dim s As String
Dim q As New Collections.Queue()
q.Enqueue("To")
q.Enqueue("be")
q.Enqueue("or")
q.Enqueue("not")

Do While q.Count > 0
 s = s & " " & CStr(q.Dequeue)
Loop
msgbox(s)

The output is "To be or not."

5.2.2 System.Data

System.Data and its nested namespaces, notably System.Data.OleDb and System.Data.SqlClient,
provide data access using ADO.NET. The OleDb and SqlClient namespaces are responsible for
defining data providers that can connect to a data source, retrieve data from a data source, write data
back to a data source, and execute commands against the data source. The most important class in
each of these namespaces is a data adapter class (in the OleDb namespace, it's the
OleDbDataAdapter class; in the SqlClient namespace, it's the SqlDataAdapter class) which is
responsible for retrieving data from a data source and writing it to a dataset. A dataset in turn is a
collection of related data that's disconnected from its original data source.

ADO.NET is not the same thing as ADO, nor is ADO.NET a new
version of ADO. Instead, ADO (or ActiveX Data Objects) is a
COM-based object model for data access. ADO.NET is an entirely

 111

new model for data access that is based on the disconnected
dataset.

5.2.3 System.IO

The System.IO namespace contains classes that provide a variety of input/output functionality, such
as:

• Manipulating directories (Directory class) and files (File class)
• Monitoring changes in directories and files (FileSystemWatcher class)
• Reading and writing single bytes, mulitbyte blocks, or characters to and from streams
• Reading and writing characters to and from strings (StringReader and StringWriter)
• Writing and reading data types and objects to and from streams (BinaryWriter and

BinaryReader)
• Providing random access to files (FileStream)

It appears that, for VB programmers, the System.IO namespace and its classes are intended to take
the place of the FileSystemObject object model that is part of the Microsoft Scripting Runtime. The
System.IO namespace is certainly much more extensive. The File and Directory classes duplicate the
functionality of the FileSystemObject. For more on these classes, see their entries in this book's
reference section.

5.2.4 System.Text.RegularExpressions

The System.Text.RegularExpressions namespace contains classes that provide access to the .NET
Framework's regular expression engine. This is not the place to go into details about regular
expressions, but we can make a few comments.

In its simplest form, a regular expression is a text string that represents a pattern that other strings
may or may not match. In this way, regular expressions form a very powerful method of string
matching. In more complicated forms, a regular expression is a kind of programming statement. For
instance, the expression:

s/ab*c/def

says to match the given string against the regular expression ab*c (strings that start with ab and end
with c). If a match exists, then replace the given string with the string def. Here are some simple
regular expressions for pattern matching:

Single character

This is matched only by itself.

Dot (.)

This is matched by any character except the newline character.

[string of characters]

This matches any single character that belongs to the string of characters. For example, [abc]
matches the single character a, b, or c. A dash can also be used in the character list, for
instance, [0-9] matches any single digit. We can also write [0-9a-z] to match any single
digit or any single lowercase character, and [a-zA-Z] to match any single lower- or
uppercase character.

 112

The ^ symbol can be used to negate the match. For instance, [^0-9] matches any character
except a digit.

Special match abbreviations

\d matches any single digit; \D matches any single nondigit.

\w is equivalent to [a-zA-Z_], thus matching any letter or underscore; \W is the negation of
\w.

Asterisk (*)

The occurrence of an asterisk within a regular expression gives a match if and only if there are
zero or more repeated instances of the single character preceding the asterisk. For example,
the regular expression \da*\d is matched by any string beginning with a single digit,
continuing with zero or more as and ending with a single digit, as with 01 or 0aaa1.

Plus sign (+)

The occurrence of a plus sign within a regular expression gives a match if and only if there are
one or more repeated instances of the single character preceding the plus sign. For example,
the regular expression \da+\d is matched by any string beginning with a single digit,
continuing with one or more as and ending with a single digit, as with 0aaa1 (but not 01).

Question mark (?)

The occurrence of a question mark within a regular expression gives a match if and only if
there are zero or one instances of the single character preceding the question mark. For
example, the regular expression \da?\d is matched by any string beginning with a single digit,
continuing with zero or one as and ending with a single digit, as with 01 and 0a1.

General multiplier

The occurrence of the substring {x,y}, where x and y are nonnegative integers within a
regular expression, gives a match if and only if there are at least x but at most y instances of
the single character preceding the opening bracket. For example, the regular expression
\da{5,10}\d is matched by any string beginning with a single digit, continuing with at least 5
but at most 10 as and ending with a single digit, as with 0aaaaaa1.

Note that you can leave out one of x or y. Thus, {x,} means "at least x," and {,y} means
"at most y."

The System.Text.RegularExpressions namespace has a Regex class, whose objects represent
regular expressions. Here is a simple example of the use of the Regex class:

' Define a new Regex object with pattern \da{3,5}\d
Dim rx As New System.Text.RegularExpressions.Regex("\da{3,5}\d")

' Do some matching
MsgBox(rx.IsMatch("0a1")) ' Displays False
MsgBox(rx.IsMatch("0aaa1")) ' Displays True

The System.Text.RegularExpressions namespace contains classes for string replacement as well, but
we do not go into these matters in this brief introduction.

 113

5.2.5 System.Windows.Forms

This namespace is the mother of all namespaces for creating Windows applications. To quote the
documentation:

The System.Windows.Forms namespace contains classes for creating Windows-based applications
that take full advantage of the rich user interface features available in the Microsoft Windows operating
system. In this namespace you will find the Form class and many other controls that can be added to
forms to create user interfaces.

In fact, each new form added to a VB .NET project contains the line:

Imports System.Windows.Forms

Fortunately, Visual Studio provides the functionality of the System.Windows.Forms namespace to us
as VB programmers, so we don't need to program directly against this namespace.

 114

 115

Chapter 6. Delegates and Events

In this chapter, we discuss delegates and events, two additional .NET framework topics that are
important to VB programmers.

6.1 Delegates

In a never-ending effort to deny VB programmers the right to use pointers, Microsoft has implemented
a feature called delegates that, according to the documentation, provide a safe alternative to function
pointers.

As you may know, a pointer variable (or pointer) is simply a variable whose value is interpreted by the
compiler as a memory address. The address to which the pointer points is the target of the pointer,
and we say that the pointer variable points to that target address. If the target address is a variable of
data type Integer, for example, then we say that the pointer is of type Integer or is an Integer pointer.
Thus, the type of a pointer is the type of the target variable. (We have seen that, as reference types,
variables of type Object and String are both pointers; i.e., their values point to the address of the data
in memory.)

A pointer can also point to a function, that is, contain the address of a function. Even though a function
is not a variable, it does have a physical location in memory and so can be the target of a pointer.
(Actually, it's reasonable to think of a function as a type of variable, but that is another story.) In this
case, we have a function pointer.

Function pointers are very useful in certain situations for calling or specifying functions. This is
commonly done in the C++ programming language, where function pointers are supported directly.

One area in which function pointers are used is in the context of callback functions. To illustrate, if we
want to enumerate all of the fonts on a given system, the Windows API provides a function called
EnumFontFamiliesEx, defined as follows:

Public Declare Function EnumFontFamiliesEx Lib "gdi32" _
 Alias "EnumFontFamiliesExA" (_
 ByVal hdc As Long, _
 lpLogFont As LOGFONT, _
 ByVal lpEnumFontProc As Long, _
 ByVal lParam As Long, _
 ByVal dw As Long) _
As Long

The third parameter requires the address of a function we must declare, called a callback function.
The reason for this term is that Windows will call our callback function for each font in the system,
passing information about the font in the parameters of the function. According to the documentation,
the callback function must have a particular form:

Public Function EnumFontFamExProc(ByVal lpelfe As Long, _
 ByVal lpntme As Long, _
 ByVal FontType As Long,
 ByRef lParam As Long) As Long

The point here is that to use EnumFontFamiliesEx, we need to pass the address of a function as one
of the parameters.

As you may know, this is done in VB using the AddressOf operator. In earlier versions of VB, this
operator is described as follows:

 116

A unary operator that causes the address of the procedure it precedes to be passed to an API
procedure that expects a function pointer at that position in the argument list.

Put another way, the AddressOf operator is implemented in VB 6 for the express purpose of passing
function addresses to API functions.

In VB .NET, the AddressOf operator returns a delegate, which is, as the documentation states:

A unary operator that creates a procedure delegate instance that references the specific procedure.

So let us discuss delegates. We begin with a rather unhelpful definition: a delegate is an object of a
class derived from either the Delegate class or the MulticastDelegate class. These two classes are
abstract, so no objects of these classes can be created. Nevertheless, other classes can be derived
from these classes, and objects can be created from these derived classes.

In VB .NET, delegates can be used to call methods of objects or to supply callback functions. In
addition, VB .NET uses delegates to bind event handlers to events. Fortunately, VB .NET also
supplies tools (such as the AddHandler method) to automate this process, so we don't need to use
delegates directly for this purpose.

A delegate object inherits a number of properties and methods from the Delegate or MulticastDelegate
class. In particular, a delegate object has:

• A Target property that references the object or objects whose method or methods are to be
called.

• A Method property that returns a MethodInfo object that describes the method or methods
associated with the delegate.

• An Invoke method that invokes the target method or methods.

By now you have probably guessed that there are two delegate classes because delegates derived
from the Delegate class can only call a single method, whereas delegates derived from
MulticastDelegate can call multiple methods.

6.1.1 Using a Delegate to Call a Method

To call a method using a delegate, we call the Invoke method of the delegate. To illustrate, consider
the class module with a simple method:

Public Class Class1
 Public Sub AMethod(ByVal s As String)
 Msgbox(s)
 End Sub
End Class

Now, in a module with a Windows Form (referred to as a form module in earlier versions of VB), we
declare a (single cast) delegate with the same parameters as the target method we wish to call:

Delegate Sub ADelegate(ByVal s As String)

The following code then uses the delegate to call the AMethod of Class1:

Protected Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Click
 ' Object of type Class1 _
 Dim obj As New Class1()

 117

 ' Declare a new delegate
 Dim delg As ADelegate

 ' Define the delegate, passing the address
 ' of the object's method
 delg = New ADelegate(AddressOf obj.AMethod)

 ' Now call the method using the delegate's Invoke method
 delg.Invoke("test")

End Sub

Note that the documentation describes the delegate constructor as taking two parameters, as in:

delg = New ADelegate(TargetObject, PointerToMethodOfObject)

However, Visual Basic is not capable of handling the second parameter, so VB supports the special
syntax:

delg = New ADelegate(AddressOf obj.AMethod)

We point this out only to warn you about the documentation on the delegate class constructor.

6.1.2 Using a Delegate as a Function Pointer

The following example illustrates the use of a delegate in the context of a callback function. In this
example, we want to create a generic sort function for sorting integer arrays. The function uses the
bubble sort algorithm for sorting, but it's generic in the sense that one of its parameters is a compare
function that is used to do the comparison of adjacent integers. Thus, by varying the external
comparison function, we can change the type of sorting (ascending, descending, or some other
method) without changing the main sort function. The compare function is a callback function, since it
is a function we supply that is called by the main sort function. (In this case, the callback function is not
supplying us with information, as in the font enumeration case described earlier. Instead, it is called to
help the sort function do its sorting.)

First, we declare a delegate. As part of the declaration of a delegate, we must specify the signature of
the method that is associated with the delegate, which, in our case, is the compare function. Since the
compare function should take two (adjacent) integers and return True if and only if we need to swap
the integers in the bubble sort algorithm, we declare the delegate as follows:

' Returns True if need to swap
Delegate Function CompareFunc(ByVal x As Integer, _
 ByVal y As Integer) _
 As Boolean

Here are two alternative target methods for the delegate—one for an ascending sort and one for a
descending sort:

Function SortAscending(ByVal x As Integer, ByVal y As Integer) As Boolean
 If y < x Then
 SortAscending = True
 End If
End Function

Function SortDescending(ByVal x As Integer, _
 ByVal y As Integer) As Boolean
 If y > x Then

 118

 SortDescending = True
 End If
End Function

Now we can define the sort routine. Note the call to the Invoke method of the delegate:

Sub BubbleSort(ByVal CompareMethod As CompareFunc, _
 ByVal IntArray() As Integer)
 Dim i, j, temp As Integer
 For i = 0 To Ubound(IntArray)
 For j = i + 1 To Ubound(IntArray)
 If CompareMethod.Invoke(IntArray(i), IntArray(j)) Then
 Temp = IntArray(j)
 IntArray(j) = IntArray(i)
 IntArray(i) = Temp
 End If
 Next j
 Next i
End Sub

Here is some code to exercise this example:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim i As Integer
 Dim iArray() As Integer = New Integer() {6, 2, 4, 9}
 BubbleSort(AddressOf SortAscending, iArray)
 For i = 0 To 3
 Debug.WriteLine(CStr(iArray(i)))
 Next
 Debug.WriteLine
 BubbleSort(AddressOf SortDescending, iArray)
 For i = 0 To 3
 Debug.WriteLine(CStr(iArray(i)))
 Next
End Sub

The output is, as you would expect:

2
4
6
9

9
6
4
2

6.2 Events and Event Binding

An event is an action that occurs. This action can take place on the part of the user of an application
(such as when the user clicks a command button), on the part of application code (such as when a
change is made to a record in a recordset), or on the part of the operating system (such as a timer
event). When an event occurs, we say that the event is raised, or fired.

Each event has a source. This is the object to which the action is applied, such as the button that was
clicked. The source is responsible for alerting the operating system that an event has occurred. It does

 119

so by sending an event notification message, generally to its parent or container window. For this
reason, Microsoft refers to the event source as the sender.

An event often has an event argument, which is simply data that pertains to the event. For instance,
the press of a keyboard key generates an event that includes event arguments describing the keycode
of the key pressed and information on the state of modifier keys (the Shift, Alt, and Ctrl keys). The
event arguments are part of the message sent by the event source.

An event handler is a procedure (or method) that is executed as a result of event notification. The
process of declaring an event handler for an event is called binding the procedure to the event.

6.2.1 Control-Related Events

Most controls have a large number of built-in events associated with them. For instance, the textbox
control has events associated with changing the text in the textbox, hitting a key while the textbox has
the focus, clicking on the textbox with the mouse, dragging the mouse over the textbox, and more.

The VB IDE can be used to insert an empty event handler, complete with the proper event parameters,
for any built-in control. The procedure is simply to select the control, then click the Events button in the
Properties window. This displays a list of built-in events for the control. Selecting one of these events
causes the VB IDE to insert an empty event handler for that event into the code editor window.

Note that each control has a default event. For instance, the default event for the command button is
the Click event. As a shortcut, we can get the VB IDE to insert an empty event handler for the default
event simply by double clicking the control. For instance, double clicking a command button produces
the following code:

Private Sub button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles button1.Click
End Sub

The sender variable is the source of the event. The second parameter is an object whose properties
describe the event arguments.

As another example, double clicking a Windows form causes the VB IDE to insert the following empty
event handler:

Protected Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

End Sub

6.2.2 WithEvents

To define a custom event in a class module, we can use the WithEvents keyword. To illustrate with
a very simple example, suppose we create the class module shown here:

Public Class Class1

 ' Declare an event
 Public Event AnEvent(ByVal EventParam As Integer)

 ' Method to raise the event
 Public Sub RaiseTheEvent(ByVal iEventNumber As Integer)
 RaiseEvent AnEvent(iEventNumber)
 End Sub

 120

End Class

In a class module with a Windows form, we declare a variable of type Class1 using the WithEvents
keyword to hook the class' events:

Public WithEvents ev As Class1

This automatically causes the VB IDE to add the variable name ev to the left-hand drop-down list
above the code window. When we select this variable, the right-hand drop-down list displays the
events for this class. In this case, the list contains only the ev_AnEvent event. Selecting this event
places an empty event shell in the code editor window (to which we have added a single line of code):

Public Sub ev_AnEvent(ByVal EventParam As System.Integer) _
 Handles ev.AnEvent
 MsgBox("Event raised: " & EventParam)
End Sub

Finally, in a button click event, we can place code to implement our simple example:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 ' Define a new Class1 instance
 ev = New Class1()
 ' Raise the event
 ev.RaiseTheEvent(7)
End Sub

We should note that the WithEvents keyword approach to event handling has one slight drawback.
Namely, we cannot use the New keyword with WithEvents, as in:

Public WithEvents ev As New Class1

Thus, the object must be instantiated separately from the variable declaration, as we did in the
previous example.

6.2.3 AddHandler

The AddHandler statement can be used to bind an event handler to a built-in or custom event using
code. This makes it possible to bind several event handlers to a single event. To illustrate, proceed as
follows. Add the default event handler for a form's Click event:

Protected Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 msgbox("Default Click Event")
End Sub

Next, add another procedure with the same signature as the default event handler:

Protected Sub Form1Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 msgbox("Custom Click Event")
End Sub

Finally, to bind the function Form1Click to the Click event, we use the AddHandler statement:

 121

AddHandler Form1.Click, AddressOf Me.Form1Click

This is actually shorthand for:

AddHandler Form1.Click, New EventHandler(AddressOf Me.Form1Click)

In general, the AddHandler statement has the following syntax:

AddHandler NameOfEventSender, AddressOf NameOfEventHandler

 122

 123

Chapter 7. Error Handling in VB .NET

In this chapter, we take a concise look at error-handling techniques in VB .NET. Note that the terms
exception and error are used synonymously throughout the VB .NET documentation, and so we use
them interchangeably in this chapter.

VB .NET supports the On Error Goto style of error handling, which is supported by earlier versions of
Visual Basic (with some new wrinkles). This type of error handling is referred to as unstructured error
handling. However, unlike earlier versions of Visual Basic, VB .NET also supports the structured
exception handling technique familiar to C++ programmers, which is now the preferred method of error
handling in VB .NET.

7.1 Error Detection and Error Handling

Let us begin by clarifying some terminology. We agree to say that handling an error means responding
to a detected error. Thus, there is a clear distinction between error detecting and error handling. The
reason for this distinction is that these processes can take place at different times and in different
locations within the code of an application. We also agree to refer to the procedure (or module) in
which an error occurs as the offending procedure (or module).

There are two types of errors that can occur in a running program. (We will not discuss compile-time or
syntax errors.) A runtime error occurs when Visual Basic attempts to perform an operation that is
impossible to perform, such as opening a file that does not exist or dividing by 0. Visual Basic
automatically takes care of error detection for runtime errors because it has no other choice. On the
other hand, proper error handling of runtime errors is up to the programmer, for otherwise Visual Basic
itself handles the error by presenting an error message and terminating the application, which is not a
good solution to the problem.

A logical error is often defined as the production of an unexpected result. It might be better to define it
as the production of an unexpected and incorrect result (although even this is still somewhat
ambiguous). For instance, consider a function that returns the IQ for an individual based on a set of IQ
test scores. If the individual is very smart, we might expect an IQ in the range of 120 or more. A result
of 100 might be unexpected, but it is not necessarily an error. On the other hand, if the function returns
an IQ of -350, that is a logical error.

Visual Basic (or, for that matter, any other language) does not provide error detection for logical errors,
because to Visual Basic, no error has occurred. However, a logical error may subsequently result in a
runtime error, which Visual Basic will certainly recognize. For instance, code that is intended to
retrieve a positive integer for later use in an integer variable may instead retrieve 0. This is a logical
error. But if that integer is later used as a denominator in some other part of the application, we can
surely expect a runtime error.

Thus, it is up to the programmer to anticipate logical errors and provide both error detection and error
handling. From this perspective, logical errors are far more serious and much more difficult to deal with
than runtime errors. After all, a runtime error won't be completely overlooked—at least Visual Basic will
do something about it, even if that consists only of presenting an error message to the user and
terminating the application.

The problem with an overlooked logical error is that it may give the user specious information (that is,
invalid information that looks valid). This is no doubt the most insidious behavior a program can
produce. If we are lucky, a logical error will generate a runtime error at some later time, but we may
still have great difficulty determining the location of the logical error from the runtime error message.

 124

7.2 Runtime Error Handling

As we have mentioned, VB currently supports both unstructured and structured error handling. Let us
first look at unstructured error handling.

7.2.1 Unstructured Error Handling

Error-handling techniques that revolve around the various On Error... statements are referred to as
unstructured error-handling techniques. These techniques generally use the Err object and the Visual
Basic call stack.

7.2.1.1 The Err object

Visual Basic's built-in error object, called Err, is one of the main tools for unstructured error handling.
This object has several properties and methods, as shown in Tables 7-1 and 7-2, respectively.

Table 7-1. Properties of the Err object
Property Description

Description A short string describing the error.
HelpContext The context ID for a help topic associated with the error.
HelpFile The fully qualified filename of the associated help file, if any.

LastDLLError

The return code from a call made to a function in an external DLL. Note, however, that
this property may change value at any time, so it is wise to store the current value in a
variable immediately upon return from the DLL call. Note also that even if the DLL call
resulted in an error, this is not considered an error by VB. (VB has no way of knowing
the meaning of return values from external functions, after all.)

Number This is the error number of the error.

Source

A string that specifies the object that generated the error. When the error is generated
within your application, the Source property is the project's name, which is more or less
useless. (It would have been nice to get the name of the offending procedure.)
However, when the error is generated by an external COM component, the Source
property returns the programmatic ID of that component, which has the form
application.objectname, as in Excel.Application, for example.

Table 7-2. Methods of the Err object
Method Description

Clear

Clears the values of all properties of the Err object. Its syntax is:

Err().Clear()

Note that the Clear method is called implicitly when any of the following statements is
executed: a Resume statement of any type; an Exit Sub, Exit Function, or Exit
Property statement; or any On Error statement.

Raise

Causes Visual Basic to generate a runtime error and sets the properties of the Err object to
the values given by the parameters of the Raise method. Its syntax is:

Err.Raise(Number, Source, Description, _
 HelpFile, HelpContext)

where all but the first named argument is optional. Each parameter corresponds to the
property of the same name.

 125

7.2.1.2 Dealing with runtime errors

Visual Basic detects a runtime error as soon as it occurs, sets the properties of the Err object, and
directs the flow of execution to a location that the programmer has specified by the most recent On
Error... line. This location can be one of the following:

• The line of code immediately following the line that caused the error.
• Another location within the offending procedure.
• The procedure that called the offending procedure, if there is one. If not, VB issues an error

message itself and terminates the application.

Let us take a closer look at each of these possibilities.

7.2.1.2.1 In-line error handling

Code execution will be "redirected" to the line following the offending line of code (that is, execution
will continue immediately following the offending line) if the most recent preceding On Error
statement is:

On Error Resume Next

This is referred to as in-line error handling. Here is an example that involves renaming a file. Note the
typical use of a Select Case statement to handle the error based on the value of Err.Number.
Incidentally, one way to obtain error numbers is to deliberately invoke a particular error and break
execution (with a breakpoint) to examine Err.Number:

Dim sOldName, sNewName As String

On Error Resume Next

' Ask for an existing file name
sOldName = InputBox("Enter the file name to rename")

' Ask for new name
sNewName = InputBox("Enter the new file name")

' Rename file
Rename("c:\" & sOldName, "c:\" & sNewName)

' Deal with error
If Err().Number = 53 Then
 ' File not found error
 MsgBox("File " & sOldName & " not found")
 Exit Sub
Else
 ' All other errors
 MsgBox(Err().Number & ": " & Err().Description)
 Exit Sub
End If

7.2.1.2.2 Centralized error handling

While in-line error handling does have its uses, there is much to be said for centralizing error handling
within a procedure. (This often improves readability and makes code maintenance easier.) We can
direct code execution to a central error handler using the code:

On Error Goto label

 126

This is outlined in the following code shell:

Sub Example()

On Error Goto ErrHandler

'' If run-time error occurs here
'' Visual Basic directs execution to ErrHandler

Exit Sub

ErrHandler:

'' Code can be placed here to handle errors
'' or pass them up the calls list.
'' We have knowledge of Err().Number, Err().Description,
'' and Err().Source.

End Sub

Once the On Error Goto label line is executed, we say that the error handler beginning at the label
ErrHandler is active.

Once code execution is directed to the error handler, there are several possibilities for dealing with the
error. The most common possibility is simply to handle the error in the active error handler, perhaps by
displaying an error message asking the user to take corrective action.

Another common (and useful) approach is passing information about an error to the calling procedure
with parameters or with the return value of the offending function. For instance, if a function is
designed to rename a file, the function might return an integer error code indicating the success or
failure of the operation. This is quite common among the Win32 API functions. In particular, the error
code might be 0 for success, -1 if the file does not exist, -2 if the new filename is invalid, and so on.

A third possibility is to pass the error to the calling procedure by invoking the Err.Raise method within
the active error handler, as in:

Err.Raise(Err.Number, Err.Source, Err.Description, _
 Err.HelpFile, Err.HelpContext)

This triggers the calling procedure's error handler (or more precisely, the next enabled error handler in
the calls list). This process is called regenerating or reraising the error.

Note that it is possible to deactivate an active error handler using the line:

On Error Goto 0

If there is no active error handler, then VB reacts to errors just as though no error handler existed in
the procedure. We describe this situation in the next section.

7.2.1.2.3 No enabled error-handler

If there is no enabled error handler in the offending procedure, either because there is no
OnErrorstatement in the procedure or because error handling has been disabled with an On Error
Goto 0 statement, then Visual Basic automatically sends the error to the calling procedure's error
handler. If the calling procedure has no error handler, the error continues up the calls list until it
reaches an enabled error handler. If none is found, then Visual Basic handles the error by displaying
an error message and terminating the application.

 127

7.2.2 Structured Exception Handling

Structured exception handling uses a Try...Catch...Finally structure to handle errors. As we will
see, VB .NET's structured exception handling is a much more object-oriented approach, involving
objects of the Exception class and its derived classes.

7.2.2.1 Try...Catch...Finally

The syntax of the Try...Catch...Finally construct is given here:

Try
 tryStatements

[Catch1 [exception [As type]] [When expression]
 catchStatements1
[Exit Try]

Catch2 [exception [As type]] [When expression]
 catchStatements2
[Exit Try]
. . .
Catchn [exception [As type]] [When expression]
 catchStatementsn]
[Exit Try]

[Finally
 finallyStatements]
End Try

The tryStatements (which are required) constitute the Try block and are the statements that are
monitored for errors by VB. Within the Try block, we say that error handling is active.

The Catch blocks (of which there can be more than one) contain code that is executed in response to
VB "catching" a particular type of error within the Try block. Thus, the Catch blocks consist of the
error handlers for the Try block.

The phrases exception [As type] and [When expression] are referred to as filters in the
VB .NET documentation. In the former case, exception is either a variable of type Exception, which
is the base class that "catches" all exceptions, or a variable of one of Exception's derived classes. (We
provide a list of these classes a bit later.) For instance, the variable declared as:

Catch e As Exception

will catch (that is, handle) any exception. The variable declared as:

Catch e As ArgumentNullException

catches (handles) any exception of class ArgumentNullException. In short, type is the name of one of
the exception classes.

The When filter is typically used with user-defined errors. For instance, the code in the following Try
block raises an error if the user does not enter a number. The Catch block catches this error:

Try
 Dim sInput As String
 sInput = Inputbox("Enter a number.")

 128

 If Not IsNumeric(sInput) Then
 Err.Raise(1)
 End If
Catch When Err.Number = 1
 Msgbox("Error1")
End Try

Note that code such as:

Dim x As Integer
Try
 x = 5
Catch When x = 5
 MsgBox(x)
End Try

does not work (that is, the Catch statements are never executed) because no error was generated.

The Exit Try statement is used to break out of any portion of a Try...Catch...Finally block. The
optional finallyStatements code block is executed regardless of whether an error occurs (or is
caught), unless an Exit Try statement is executed. This final code can be used for cleanup in the
event of an error. (By placing an Exit Try at the end of the Try block, the finallyStatements are
not executed if no error occurs.)

As with unstructured error handling, VB may pass an error up the call stack when using structured
error handling. This happens in the following situations:

• If an error occurs within a Try block that is not handled by an existing Catch block
• If an error occurs outside any Try block (provided, of course, that no On Error-style error

handlers are active).

7.2.2.2 Exception classes

The System namespace contains the Exception class, which is the base class for a substantial
collection of derived exception classes, listed as follows. Note that the indentation indicates class
inheritance. For example, EntryPointNotFoundException (the fifth from the last entry in the list) inherits
from TypeLoadException.

Exception
 ApplicationException
 SystemException
 AccessException
 FieldAccessException
 MethodAccessException
 MissingMemberException
 MissingFieldException
 MissingMethodException
 AppDomainUnloadedException
 AppDomainUnloadInProgressException
 ArgumentException
 ArgumentNullException
 ArgumentOutOfRangeException
 DuplicateWaitObjectException
 ArithmeticException
 DivideByZeroException
 NotFiniteNumberException
 OverflowException

 129

 ArrayTypeMismatchException
 BadImageFormatException
 CannotUnloadAppDomainException
 ContextMarshalException
 CoreException
 ExecutionEngineException
 IndexOutOfRangeException
 StackOverflowException
 ExecutionEngineException
 FormatException
 InvalidCastException
 InvalidOperationException
 MulticastNotSupportedException
 NotImplementedException
 NotSupportedException
 PlatformNotSupportedException
 NullReferenceException
 OutOfMemoryException
 RankException
 ServicedComponentException
 TypeInitializationException
 TypeLoadException
 EntryPointNotFoundException
 TypeUnloadedException
 UnauthorizedAccessException
 WeakReferenceException
URIFormatException

As Microsoft states: "Most of the exception classes that inherit from Exception do not implement
additional members or provide additional functionality." Thus, it is simply the class name that
distinguishes one type of exception from another. The properties and methods applied to an exception
object are inherited from the Exception base class.

When writing Catch blocks, we always face the question of whether to simply trap the generic
exception class, as in:

Sub test()
 Try
 ...
 Catch e As Exception
 ...
 End Try
End Sub

or whether to trap specific exception classes. Of course, the time to trap specific exception classes is
when we want to handle errors differently based on their class. For instance, this may take the form of
issuing different custom error messages for different exception types.

Also, there are occasions when we may want to take advantage of members of a particular exception
class that are not implemented in the Exception base class. For instance, the ArgumentException
class has a ParamName property that returns the name of the parameter that causes the exception.
Now, if we simply trap the generic Exception class, as in the following code:

Sub test()
 Try
 Dim s, d As String
 s = "c:\temp.txt"
 ' Attempt to copy a file to a nonvalid target

 130

 FileCopy(s, d)
 Catch e As Exception
 MsgBox(e.Message)
 End Try
End Sub

then we cannot take advantage of the ParamName property. On the other hand, if we specifically trap
the ArgumentException class, as in the following code:

Sub test1()
 Try
 Dim s, d As String
 s = "c:\temp.txt"
 ' Attempt to copy a file to a nonvalid target
 FileCopy(s, d)
 Catch e As ArgumentException
 MsgBox(e.Message & " Parameter: " & e.ParamName)
 End Try
End Sub

then we can retrieve the name of the offending parameter.

Now let us take a look at some of the members of the Exception class:

Message property

A string containing an error message.

Source property

A string that describes the application or object that threw the exception.

StackTrace property

A string that contains the stack trace immediately before the exception was thrown. We
provide an example of this in a moment.

TargetSite property

A string that gives the method that threw the exception.

ToString method

A string that returns the fully qualified name of the exception, possibly the error message, the
name of the inner exception, and the stack trace. Its syntax is simply:

ToString()

The best way to get a feel for these members is with an example. Consider the following code, which
consists of three subroutines. The first subroutine, Exception0, contains a Try...Catch... statement. In
the Try code block, the subroutine Exception0 calls the subroutine Exception1, which simply calls
Exception2.

Sub Exception0()
 Dim s As String
 Try
 Exception1()

 131

 Catch e As Exception
 s = "Message: " & e.Message
 s = s & ControlChars.CrLf & "Source: " & e.Source
 s = s & ControlChars.CrLf & "Stack: " & e.StackTrace
 s = s & ControlChars.CrLf & "Target: " & e.TargetSite.Name
 s = s & ControlChars.CrLf & "ToString: " & e.ToString
 debug.writeline(s)
 End Try

End Sub

Sub Exception1()
 Exception2()
End Sub

Sub Exception2()
 Throw New ArgumentNullException()
End Sub

In Exception2, there is a single line of code that executes the Throw statement, which throws an
exception. This is similar to raising an error with the Err.Raise method. However, as you can see by
the New keyword, the Throw statement actually creates an object of one of the exception types.

The output from the call to Exception0 is:

Message: argument can't be null
Source:
Stack: at WindowsApplication3.Form1.Exception2()
 in C:\VBNET\Form1.vb:line 68
 at WindowsApplication3.Form1.Exception1()
 in C:\VBNET\Form1.vb:line 66
 at WindowsApplication3.Form1.Exception0()
 in C:\VBNET\Form1.vb:line 53
Target: Exception2
ToString: System.ArgumentNullException: argument can't be null
 at WindowsApplication3.Form1.Exception2()
 in C:\VBNET\Form1.vb:line 68
 at WindowsApplication3.Form1.Exception1()
 in C:\VBNET\Form1.vb:line 66

at WindowsApplication3.Form1.Exception0()
 in
C:\VBNET\Form1.vb:line 53

7.3 Dealing with Logical Errors

Since Visual Basic makes the handling of runtime errors a relatively straightforward process, it seems
reasonable to try to mimic this process for logical errors.

7.3.1 Detecting Logical Errors

To detect a logical error, we place error-detection code immediately following the potential offender.
For instance, consider the following procedure shell for getting a sequence of positive integers from
the user, starting with the number of integers:

Public Sub GetSomeData()
Dim DataCt As Integer
DataCt = CInt(InputBox("Enter number of items."))

 132

' Code here to get the individual data values ...
End Sub

The proper place for error-detecting code is immediately following the InputBox function, where we
can check for a nonpositive integer:

Public Sub GetSomeData()
Dim DataCt As Integer
DataCt = CInt(InputBox("Enter number of items."))
' Check for error
If DataCt < = 0 then
 ' something here
End If
' Code here to get the individual data values ...
End Sub

Note that the alternative to immediate detection of logical errors is to place the error-detecting code
just prior to using the value of DataCt, but this is both dangerous and inefficient. It is dangerous since
we might forget to place the code, and it is inefficient since we may use DataCt in a variety of
locations in the program, each of which would require error-detecting code.

7.3.2 Where to Handle a Logical Error

Once a logical error is detected, we have three choices as to where to handle that error.

7.3.2.1 Handling the error on the spot

A logical error can be handled at the location where it was detected. Here is an example:

Public Sub GetSomeData()
TryAgain:
DataCt = CInt(InputBox("Enter number of items."))
' Check for error
If DataCt < = 0 then
 If MsgBox("Number must be a positive integer." & _
 " Try again or cancel.", vbQuestion+vbOKCancel) _
 = vbOK then
 Goto TryAgain
 Else
 Exit Sub
 End If
End If
'' Code here to get the individual data values ...
End Sub

Handling a logical error on the spot may be appropriate when the required code is short. It is also
appropriate in Property procedures, which often amount to little more than a single line that sets a
private instance variable, preceded by data validation, which is essentially logical-error detection.

7.3.2.2 Handling the error in the offending procedure's error handler

We can duplicate the procedure that Visual Basic uses for runtime errors simply by raising our own
runtime error. Here is an example using structured exception handling:

Try
 Dim DataCt As Integer = CInt(InputBox("Enter number of items."))
 ' Check for error

 133

 If DataCt <= 0 Then
 ' Throw an exception
 Throw New Exception("Must enter a positive number.")
 End If
Catch ex As Exception
 MsgBox(ex.Message)
End Try

Note that the Exception class constructor (in one of its overloaded forms) is:

Overloads Public Sub New(String)

where String is the error message to be associated with the error.

Here is an example of error raising using unstructured error handling:

Public Sub GetSomeData()

On Error Goto ErrGetSomeData

DataCt = CInt(InputBox("Enter number of items."))

' Check for error
If DataCt < = 0 then
 ' Raise an error
 Err().Raise Number:= ErrBadDataCt
End If
' Code here to get the individual data values ...
Exit Sub

' Error-handler
ErrGetSomeData:
Select Case Err().Number
 Case ErrBadDataCt
 '' Deal with this error by displaying
 '' message and getting help from user
 Case Else
 '' Deal with other errors
End Select
Exit Sub

End Sub

7.3.2.3 Passing the error to the calling procedure

As with runtime errors, passing the error to the calling procedure can be done in a parameter of the
offending procedure or as the return value of the offending function. Also, the calling procedure's error
handler can be called by throwing (or raising) an error.

7.4 Error Constants

To raise our own errors using the Err.Raise method, we need error numbers that do not conflict with
those used by Visual Basic. The Visual Basic documentation says that error numbers in the range
vbObjectError to vbObjectError + 65535, where vbObjectError is a built-in constant whose
value is the signed integer -2147220991 (or &H80040000 as an unsigned hexadecimal integer), are
designed to signal an error generated by an object.

 134

It further says that error numbers below vbObjectError + 512 may conflict with values reserved for
OLE, so these numbers are verboten. Thus, we are left with numbers in the range vbObjectError +
512 to vbObjectError + 65535, which should be plenty.

Many programmers like to assign symbolic constants to error numbers, since it tends to improve
readability and cut down on the need for comments. For instance, we could add the line:

Public Const ErrBadDataCt = vbObjectError + 1024

in a standard module.

 135

Part II: Reference

This section consists only of one very long chapter (Chapter 8), which contains an alphabetic
reference to VB .NET language elements.

The chapter documents the following:

• Statements, such as AddHandler or Structure...End Structure.
• Procedures, such as AppActivate or Rename. These were statements in previous

versions of Visual Basic, but now they are methods of one class or another within the
Microsoft.VisualBasic namespace. The official documentation describes them as
functions, but since they don't return a value, we've chosen to describe them as
procedures.

• Functions, such as Format or IsReference.
• Compiler directives, such as #Const or #If.
• Visual Basic classes and their members. The two intrinsic objects available in Visual

Basic are the Collection object and the Err object.
• Selected classes in the .NET Framework Class Library, along with their members.

Documentation of the Framework Class Library, however, is highly selective; we've
chosen classes and their members either because they replace language elements
that were present in VB 6, or because they provide much needed functionality that
supplements existing language elements.

When you're looking for a particular language element but don't quite remember what it's called, an
alphabetic reference is of little value. For this reason, we've included Appendix B.

Finally, two language elements are covered in the appendixes rather than in Part II. With a few
exceptions (notably, Like and Is) that are documented in Part II, Visual Basic operators are
covered in Appendix C. And Visual Basic constants and enumerations are listed in Appendix D.

Chapter 8. The Language Reference

This long chapter documents VB .NET language elements. To help you speed the process of finding
the right element to perform a particular task, you can use Appendix B to determine what language
elements are available for the purpose you require. If you're using Visual Studio .NET, you can also
make use of its Object Browser to browse the Microsoft.VisualBasic namespace.

In documenting the VB .NET language, we've tried to provide a consistent and uniform treatment of
particular types of language elements. These language elements are:

Functions

The entry for each function provides the standard information that you'd expect for a function:
its syntax, parameters (if it has any), return value, and description. In addition, we list rules for
using the function (see Rules at a Glance), discuss tips and tricks related to the function
(see Programming Tips and Gotchas), frequently provide examples, and list related
language elements.

In addition, each VB .NET function is in fact a method, since it is a member of a particular
class in the Microsoft.VisualBasic namespace. In each case, we've listed the class to which
the function belongs.

For the first time, Visual Basic supports both named and positional arguments for all functions,
procedures, and methods, with just a few exceptions. Functions, procedures, or methods that
accept parameter arrays as arguments don't accept named arguments if the ParamArray

 136

parameter is present. And "functions" that are actually resolved by the compiler at compile
time (the conversion functions fall into this category) do not accept named arguments. To see
how named arguments work, let's look at the syntax of the Mid function:

Mid(Str As String, Start As Integer, Length As Integer)

Using positional arguments, you might call the function as follows:

iPos = Mid(strName, 12, 10)

The same function call using named arguments might appear as follows:

iPos = Mid(start:=12, str:=strName, length:=10)

Since named arguments are nearly universally accepted, we only note when you can't use
named arguments with a particular function. The name of each argument is provided in the
function's syntax statement.

Finally, we've noted any differences between the operation of the function under previous
versions of Visual Basic and under VB .NET.

Procedures

Procedures are really functions that don't return a value to the caller. Consequently, except for
the absence of a return value, the same information is presented for procedures as for
functions.

Procedures are interesting as a separate language category. Under previous versions of
Visual Basic, they were statements. With the rationalization and streamlining of Visual Basic
for its .NET version, they were moved into classes in the Microsoft.VisualBasic namespace
and became procedures. The official documentation describes them as functions, although
they do not return a value.

Statements

Visual Basic statements are not class members, don't support named arguments, and don't
return a value. Aside from these three items, the same information is presented for statements
as for procedures and functions.

Directives

Visual Basic directives are really statements that provide instructions to the VB .NET compiler
or to a .NET development environment like Visual Studio. Like statements, they are not class
members, don't support named arguments, and don't return a value. In general, the same
information is presented for directives as for statements.

Classes and Objects

Entries for classes and objects identify the namespace to which the class belongs (something
that is particularly important in the case of the Framework Class Library) and indicate whether
the class is creatable. If a class is createable, a new instance of that class can be created by
using the New keyword, as in:

Dim colStates As New Collection

 137

In some cases, the entry for the class or object also includes a summary listing of the class'
members, along with their syntax and a brief description.

Class Members (Properties, Methods, and Events)

When the members of a class seem to be particularly interesting or important, we've devoted
separate entries to each. These contain the same items of information as functions.

#Const Directive

Syntax
#Const constantname = expression
constantname

Use: Required

Data Type: String literal

Name of the constant

expression

Use: Required

Data Type: Literal

Any combination of literal values, other conditional compilation constants defined with the
#Const directive, and arithmetic or logical operators except Is

Description

Defines a conditional compiler constant.

By using compiler constants to create code blocks that are included in the compiled application only
when a particular condition is met, you can create more than one version of the application using the
same source code. This is a two-step process:

• Defining the conditional compiler constant. This step is optional; conditional compiler
constants that are not explicitly defined by the #Const directive, but are referenced in code,
default to a value of Nothing.

• Evaluating the constant in the conditional compiler #If...Then statement block.

A conditional compiler constant can be assigned any string, numeric, or logical value returned by an
expression. However, the expression itself can only consist of literals, operators other than Is, and
another conditional compiler constant.

When the constant is evaluated, the code within the conditional compiler #If...Then block is
compiled as part of the application only when the expression using the conditional compiler constant
evaluates to True.

 138

Rules at a Glance

• Conditional compiler constants are evaluated by the conditional compiler #If...Then
statement block.

• You can use any arithmetic or logical operator in the expression except Is.
• You cannot use other constants defined with the standard Const statement in the expression.
• You cannot use intrinsic functions or variables in expression.
• Constants defined with #Const can only be used in conditional code blocks.
• You can place the #Const directive anywhere within a source file. If placed outside of all

modules, the defined constant is visible throughout the source file, but is not visible to any
other source files in the project. If placed in a module, the scope of the constant is that module.
If placed in a procedure, the scope is that procedure and all called procedures.

• The #Const directive must be the first statement on a line of code. It can be followed only by
a comment. Note that the colon, which is used to combine two complete sets of statements
onto a single line, cannot be used on lines that contain #Const.

Programming Tips and Gotchas

• Conditional compiler constants help you debug your code, as well as provide a way to create
more than one version of your application. You can include code that only operates when run
in debug mode. The code can be left in your final version and does not compile unless running
in the debugger. Therefore, you don't need to keep adding and removing debugging code.

• Conditional compiler constants may be defined in terms of other conditional compiler
constants. For example, the following code fragment works as expected:

• #Const Flag1 = 1
• #Const Flag2 = 1

#Const Flags = Flag1 + Flag2

• A conditional compiler constant can be defined at the command line using the /define or /d
switch.

• It is important to remember that the constant defined by #Const is evaluated at compile time
and therefore does not return information about the system on which the application is running.
For example, the intent of the following code fragment is to test for a sound card and, if one is
present, to include code to take advantage of the system's enhanced sound capabilities:

• If waveOutGetNumDevs > 0 Then
• #Const ccSoundEnabled = True
• Endif
• ...
• #If ccSoundEnabled Then
• ' Include code for sound-enabled systems
• #Else
• ' Include code for systems without a sound card

#End If

• However, the code does not work as expected, since it includes or excludes the code
supporting a sound card based on the state of the machine on which the program is compiled,
rather than the machine on which the application is run.

See Also

#If...Then...#Else Directive

 139

#If...Then...#Else Directive

Syntax
#If expression Then
 statements
[#ElseIf furtherexpression Then
 [elseifstatements]]
[#Else
 [elsestatements]]
#End If
expression

Use: Required

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to True or False

statements

Use: Required

One or more lines of code or compiler directives, which is executed if expressionevaluates
to True

furtherexpression

Use: Optional

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to True or False. furtherexpression is only evaluated if the preceding
expression evaluates to False

elseifstatements

Use: Optional

One or more lines of code or compiler directives, which is executed if furtherexpression
evaluates to True

elsestatements

Use: Optional

One or more lines of code or compiler directives, which are executed if expression or
furtherexpression evaluates to False

Description

Defines a block or blocks of code that are only included in the compiled application when a particular
condition is met, allowing you to create more than one version of the application using the same
source code.

 140

Conditionally including a block of code is a two-step process:

• Use the #Const directive to assign a value to a conditional compiler constant.
• Evaluate the conditional compiler constant using the #If...Then...#End If statement

block.

Only code blocks whose expressions evaluate to True are included in the executable. You can use
the #Else statement to execute code when the #If...Then expression evaluates to False. You
can also use an #ElseIf statement to evaluate more expressions if previous expressions in the
same block have evaluated to False.

Some uses of conditional compilation code are:

• To provide blocks of debugging code that can be left within the source code and switched on
and off using a conditional constant. Since debug statements such as Debug.Write have no
effect in compiled executables, they do not need to be included in conditional compilation
code for the purpose of removing them from the final executable.

• To provide blocks of code that can perform different functions based on the build required by
the developer. For example, you may have a sample version of your application that offers
less functionality than the full product. This can be achieved using the same source code and
wrapping the code for menu options, etc., within conditional compiler directives.

• To provide blocks of code that reference different components depending upon the build
criteria of the application.

Rules at a Glance

• Unlike the normal If...Then statement, you cannot use a single-line version of the
#If...Then statement.

• All expressions are evaluated using Option Compare Text, regardless of the setting of
Option Compare.

• If a conditional compiler constant is undefined, comparing it to Nothing, 0, False, or an
empty string ("") returns True.

Example
#Const ccVersion = 2.5
Private oTest as Object

Sub GetCorrectObject()

#If ccVersion = 2.5 Then
 Set oTest = New MyObject.MyClass
#Else
 Set oTest = New MyOtherObject.MyClass
#End If

End Sub

Programming Tips and Gotchas

• You can negate the evaluation of the expression in the #If...Then or #ElseIf...Then
statements by placing the Not operator before the expression. For example, #If Not
ccVersion = 5 Then forces the code after this line to compile in all situations where
ccVersion does not equal 5.

• Conditional compilation helps you debug your code, as well as provides a way to create more
than one version of your application. You can include code that will only operate when run in

 141

debug mode. The code can be left in your final version and will not compile unless running in
the debugger; therefore, you don't need to keep adding and removing code.

See Also

#Const Directive

#Region...#End Region Directive

Syntax
#Region "identifier_string"
' code goes here
#End Region
identifier_string

Use: Required

Data Type: String literal

The title of the code block (or region)

Description

Marks a block of code as an expandable and collapsible region or code block in the Visual
Studio .NET editor

Rules at a Glance

• Code blocks delineated with the #Region...#End Region directive are collapsed by default.
• identifier_string serves as the title to identify the region when it is collapsed.
• Code blocks defined by other directives (such as #If) must be entirely contained within the

#Region...#End Region block.

Abs Function

Class

System.Math

Syntax
Math.Abs(value)
value

Use: Required

 142

Any valid numeric expression

A number whose absolute value is to be returned

Return Value

The absolute value of value. The data type is the same as that of the argument passed to the
function.

Description

Returns the absolute value of value. If value is an uninitialized variable, the return value is 0

Rules at a Glance

• Only numeric values can be passed to the Abs function.
• This is a Shared member of the Math class, so it can be used without creating any objects.

Example

In this example, the LineLength function is used to determine the length of a line on the screen. If the
line runs from left to right, X1 is less than X2, and the expression X2 - X1 returns the length of the line.
If, however, the line runs from right to left, X1 is greater than X2, and a negative line length is returned.
As you know, in most circumstances it does not matter which way a line is pointing; all you want to
know is how long it is. Using the Abs function allows you to return the same figure whether the
underlying figure is negative or positive:

Function LineLength(X2 as Integer) as Integer

 Dim X1 As Integer

 X1 = 100
 LineLength = Math.Abs(X2 - X1)

End Function

Programming Tips and Gotchas

Because the Abs function can only accept numeric values, you may want to check the value you pass
to Abs using the IsNumeric function to avoid generating an error. This is illustrated in the following
code snippet:

If IsNumeric(sExtent) Then
 Math.Abs(sExtent)
 ...
End If

VB .NET/VB 6 Differences

In VB 6, Abs is an intrinsic VB function. In the .NET platform, it is a member of the Math class in the
System namespace, and so it is not part of the VB .NET language.

See Also

 143

Sign Function

Acos Function

Class

System.Math

Syntax
Math.Acos(d)
d

Use: Required

Data Type: Double or any valid numeric expression

A cosine, which is a number greater than or equal to -1 and less than or equal to 1

Return Value

A Double between 0 and pi that is the arccosine of d in radians

Description

Returns the arccosine of d in radians

Rules at a Glance

• If d is out of range (less than -1 or greater than 1), Acos returns NaN.
• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB .NET/VB 6 Differences

The Acos function did not exist in VB 6.

See Also

Asin Function, Atan Function, Atan2 Function

AddHandler Statement

 144

Syntax
AddHandler NameOfEventSender, AddressOf NameOfEventHandler
NameOfEventSender

Use: Required

Type: String literal

The name of a class or object instance and its event, such as Button1.Click

NameOfEventHandler

Use: Required

Type: String literal

The name of a subroutine that is to serve as the event handler for NameOfEventSender

Description

Binds an event handler to a built-in or custom event. This makes it possible to bind several event
handlers to a single event.

• EventNameOfSender takes the form class.event or object.event.
• You can stop handling events defined by the AddHandler statement by calling the

RemoveHandler statement.

Example

For an illustration, see Section 6.2.3 in Chapter 6.

Programming Tips and Gotchas

The WithEvents keyword can be used to receive event notification for the lifetime of an object. In
contrast, AddHandler and RemoveHandler can be used to dynamically add and remove event
notification at runtime.

AddressOf Operator

Syntax
AddressOf procedurename
procedurename

Use: Required

The name of a procedure that is referenced by the procedure delegate

Description

 145

The AddressOf operator returns a procedure delegate instance that references a specific procedure.

The AddressOf operator is used in the following situations:

• If a parameter to a procedure (a VB procedure or a Win32 API function) requires a function
pointer (the address of a function), then we can pass the expression:

AddressOf functionname

• where functionname is the name of the function. This function is called a callback function.
• AddressOf is also used to create delegate objects, as in:

delg = New ADelegate(AddressOf obj.AMethod)

• AddressOf is used to bind event handlers to events through the AddHandler statement:

AddHandler Form1.Click, AddressOf Me.Form1Click

Examples of all three applications of AddressOf can be found in Section 6.1 in Chapter 6.

VB .NET/VB 6 Differences

In VB 6, the AddressOf operator can only be used in a call to a Windows API function. Moreover, the
argument passed to AddressOf must be the name of a procedure in a standard code module.
However, in VB .NET these restrictions no longer apply.

AppActivate Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
[Interaction.]AppActivate(title)
title

Use: Required

Data Type: String or Integer

The name of the application as currently shown in the application window title bar. This can
also be the task ID returned from the Shell function.

Description

Activates a window based on its caption

Rules at a Glance

 146

• AppActivate performs a case-insensitive search on all top-level windows for a window
caption that matches title. If an exact match is found, the window is activated. If no match
is found, then the window captions are searched for a prefix match (title matches the
beginning of the window caption). For example, the title "Microsoft Word" matches
"Microsoft Word - MyDocument.doc". If a prefix match is found, the window is activated.
Note that if multiple prefix matches are found, there is no way to predict which matching
window will be activated.

• The window state (Maximized, Minimized, or Normal) of the activated application is not
affected by AppActivate.

• If a matching application cannot be found, an exception of type System.ArgumentException is
raised, and runtime error 5, "Invalid procedure call or argument," is generated.

Example
Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button2.Click

 Dim bVoid As Boolean
 bVoid = ActivateAnApp("Microsoft Excel")

End Sub

Function ActivateAnApp(vAppTitle As String) As Boolean

 On Error GoTo Activate_Err

 ActivateAnApp = False
 AppActivate(vAppTitle)
 ActivateAnApp = True

 Exit Function

Activate_Err:
 MsgBox ("Application " & vAppTitle & _
 " could not be activated")

End Function

Programming Tips and Gotchas

• AppActivate searches only top-level windows.
• You can also use the task ID returned by the Shell function with the AppActivate statement,

as this simple example demonstrates:
• Option Explicit
• Private vAppID
•
• Private Sub Button1_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) _
• Handles Button1.Click
• vAppID = Shell("C:\Program Files\Internet

Explorer\IEXPLORE.EXE")
• End Sub
• Private Sub Button2_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) _
• Handles Button2.Click
• AppActivate vAppID

End Sub

 147

• AppActivate is very difficult to use with applications whose application titles change to
reflect the state or context of the application. Microsoft Outlook illustrates an excellent
example of this problem. If the user has Outlook in the Calendar section, the title bar reads
"Calendar - Microsoft Outlook," whereas if in the Inbox section, the title bar reads "Inbox -
Microsoft Outlook." In situations such as this, we must resort to other techniques, such as
using Win32 API methods, to enumerate all windows and check the captions directly.

• AppActivate is often used to give the focus to a particular window before keystrokes are
sent to it using the SendKeys statement, which sends keystrokes to the active window only.

VB .NET/VB 6 Differences

In VB 6, AppActivate has a second optional parameter, wait, a Boolean that determines whether
the application calling AppActivate must have the focus for the window indicated by title to be
activated. In VB .NET, wait is not supported.

See Also

Shell Function

Application Class

Namespace

System.Windows.Forms

Createable

No

Description

The Application object provides a diverse range of functionality, including support for multithreaded
programming, access to the system registry, and support for subclassing (intercepting messages sent
to application windows). It also includes a variety of informational functions, such as properties to
retrieve the company name, to retrieve the application's executable path, and to retrieve the
application's name and version.

Application objects can be created as follows:

Dim obj As Application

However, because all of the Application object's members are shared, you do not need to instantiate
the Application object to access its properties and methods. Hence, you can retrieve the executable
path of your application, for instance, with the code fragment:

Dim sPath As String = Application.ExecutablePath

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Properties

 148

AllowQuit
CommonAppDataPath
CommonAppDataRegistry
CompanyName +
CurrentCulture
CurrentInputLanguage
ExecutablePath +
LocalUserAppDataPath
MessageLoop
ProductName +
ProductVersion +
SafeTopLevelCaptionFormat
StartupPath
UserAppDataPath
UserAppDataRegistry

Public Shared Methods
AddMessageFilter
DoEvents +
Exit
ExitThread
OleRequired
OnThreadException
RemoveMessageFilter
Run

Public Shared Events
ApplicationExit
Idle
ThreadException
ThreadExit

See Also

Application.CompanyName Property, Application.DoEvents Method,
Application.ExecutablePath Property, Application.ProductName Property,
Application.ProductVersion Property

Application.CompanyName Property

Class

System.Windows.Forms.Application

Syntax
Application.CompanyName()

Return Value

A String containing the company name for the application

 149

Description

Gets the company name for the application. This is a read-only property.

The value of the CompanyName property can be defined by including the <AssemblyCompany>
attribute in the AssemblyInfo file for the application. Its syntax is:

<Assembly: AssemblyCompany("sCompany")>

where sCompany is a string literal containing the company name.

See Also

Application Class, Application.ProductName Property, Application.ProductVersion Property

Application.DoEvents Method

Class

System.Windows.Forms.Application

Syntax
Application.DoEvents()

Description

Allows the operating system to process events and messages waiting in the message queue.

For example, you can allow a user to click a Cancel button while a processor-intensive operation is
executing. In this case, without DoEvents, the click event is not processed until after the operation had
completed. With DoEvents, Windows allocates time for the Cancel button's Click event to fire and the
event handler to execute.

Example

The following example uses a form with two command buttons to illustrate DoEvents. Suppose the
user clicks CommandButton1. Then the Do loop in the click event executes indefinitely. However, if the
user clicks CommandButton2, its click event is processed when the DoEvents statement in
CommandButton1_Click is executed. This sets the Boolean flag to False, which terminates the Do
loop.

Option Explicit
Private lngCtr As Long
Private blnFlag As Boolean

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _
 Handles Button1.Click

 150

 blnFlag = True

 Do While blnFlag
 lngCtr = lngCtr + 1
 DoEvents()
 Loop
 MsgBox("Loop interrupted after " & lngCtr & _
 " iterations.")
End Sub

Private Sub CommandButton2_Click()

 blnFlag = False

End Sub

Programming Tips and Gotchas

• While DoEvents can be indispensable for increasing the responsiveness of your application, it
should at the same time be used judiciously, since it entails an enormous performance penalty.
For example, the following table compares the number of seconds required for a simple
For...Next loop to iterate one million times when DoEvents isn't called, on the one hand,
and when it's called on each iteration of the loop, on the other.

Without DoEvents 0.01 seconds
With DoEvents 49.26 seconds

• If most of a procedure's processing occurs inside of a loop, one way to avoid too many calls to
DoEvents is to call it conditionally every ten, hundred, or thousand iterations of the loop. For
example, the following code calls DoEvents every thousand iterations:

• Dim lCtr As Long
• For lCtr = 0 To 1000000
• If (lCtr Mod 1000) = 0 Then
• DoEvents
• End If

Next

• DoEvents should not be used in any event procedure or callback routine that is invoked
automatically by the operating system. Doing so causes re-entrance problems. (The event or
routine may be called again during the processing of the DoEvents method.) For the same
reason, DoEvents should not be used in in-process COM objects created with Visual Basic.

See Also

Application Class

Application.ExecutablePath Property

Class

System.Windows.Forms.Application

 151

Syntax
Application.ExecutablePath()

Return Value

A String containing the complete path of the executable file for the application

Description

Gets the complete path of the executable file for the application. This is a read-only property.

VB .NET/VB 6 Differences

The ExecutablePath property in the .NET Framework corresponds to the App.Path property in VB 6.

See Also

Application Class

Application.ProductName Property

Class

System.Windows.Forms.Application

Syntax
Application.ProductName()

Return Value

A String containing the product name of the application

Description

Gets the product name of the application. This is a read-only property.

The value of the ProductName property can be defined by including the <AssemblyProduct>
attribute in the application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyProduct("sProduct")>

where sProduct is a string literal containing the product name.

VB .NET/VB 6 Differences

The ProductName property in the .NET Framework corresponds to the App.ProductName property in
VB 6.

 152

See Also

Application Class, Application.CompanyName Property, Application.ProductVersion
Property

Application.ProductVersion Property

Class

System.Windows.Forms.Application

Syntax
Application.ProductVersion()

Return Value

A String containing the product version of the application

Description

Gets the product version of the application. This is a read-only property. The product version typically
has the form:

MajorVersionNumber.MinorVersionNumber.BuildNumber.PrivatePartNumber

Its default value is "1.0.*", which indicates that Visual Studio maintains default build and revision
numbers.

The value of the ProductVersion property can be defined by including the <AssemblyVersion>
attribute in the application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyVersion("maj.min.bld.rev")>

where maj is the major version number, min is the minor version number, bld is the build number,
and rev is the revision number.

VB .NET/VB 6 Differences

The ProductVersion property in the .NET Framework corresponds to the App.Major, App.Minor, and
App.Revision properties in VB 6.

See Also

Application Class, Application.CompanyName Property, Application.ProductName Property

Array Class

 153

Namespace

System

Createable

Yes

Description

An Array object (that is, an instance of the Array class) that represents an array.

Arrays defined in VB .NET are Array objects, so they support the members of the Array class. Array
class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Instance Properties
IsFixedSize
IsReadOnly
IsSynchronized
Length
Rank
SyncRoot

Public Shared Methods
BinarySearch +
Clear
Copy +
CreateInstance
IndexOf +
LastIndexOf +
Reverse +
Sort +

Public Instance Methods
Clone
CopyTo
Equals
GetEnumerator
GetHashCode
GetLength
GetLowerBound
GetType
GetUpperBound
GetValue
Initialize
SetValue
ToString

Array.BinarySearch Method

 154

Class

System.Array

Syntax
Array.BinarySearch(array, value, [comparer])
Array.BinarySearch(array, index, length, value, [comparer])
array

Use: Required

Data Type: Any array

The one-dimensional array to be searched

value

Use: Required in first overloaded function

Data Type: Any

The value to search for in array

index

Use: Required in second overloaded version

Data Type: Integer

The array element at which the search is to start

length

Use: Required in second overloaded version

Data Type: Integer

The number of array elements to be searched

comparer

Use: Optional

Data Type: IComparer

A BCL or user-defined class implementing the IComparer interface that determines how two
items are compared for equality.

Return Value

An Integer representing the zero-based ordinal position of the element matching value

 155

Description

This method provides a quick way to search for a value in a sorted one-dimensional array, returning
the smallest index whose element is that value. It uses a binary search algorithm, which tends to take
log2(n) comparisons to find an item in an array of length n. For example, if n = 100,000, the number of
comparisons is on the order of 17.

To illustrate, if arr is an array of names in alphabetical order, then the code:

Array.BinarySearch(arr, "steve")

returns the smallest index with element "steve." If no such element exists, BinarySearch returns the
negative number whose bitwise complement is the index of the first element that is larger than "steve."

Rules at a Glance

• The array must be a one-dimensional array sorted in ascending order.
• If value is not found in the array, the method returns a negative number, which is the bitwise

complement of the index of the first element that is larger than value. To extract this value,
you can use the Not operator, as in the following code fragment:

• iResult = Array.BinarySearch(lArr, lSearch)
• if iResult >= 0 Then
• MsgBox(iResult)
• Else
• MsgBox(iResult & vbcrlf & Not iResult)

End If

• By default, the System.Collections.Comparer class is used to compare value with the
members of array. This means that string comparisons are case sensitive.

Programming Tips and Gotchas

• If an array contains Boolean values, the method fails to correctly identify the position of the
first False value in the array.

• In addition to the Comparer class, you can also pass an instance of the
System.Collections.CaseInsensitiveComparer class as the comparer argument. It provides
for case-insensitive comparisons. For example:

• Dim sArr() As String = {"Alaska", "ALASKA", "Michigan",
"MICHIGAN", _

• "New York", "NEW YORK"}
• Dim sSearch As String
• Dim lResult As Long
• Dim oComp As New CaseInsensitiveComparer
•
• sSearch = "MICHIGAN"

iResult = Array.BinarySearch(sArr, sSearch, oComp)

In this case, because of the case-insensitive comparison, the value of lResult is 2.

See Also

Array.IndexOf Method, Array.LastIndexOf Method, Array.Sort Method

 156

Array.Copy Method

Class

System.Array

Syntax
Array.Copy(sourceArray, destinationArray, length)

Array.Copy(sourceArray, sourceIndex, destinationArray, _
 destinationIndex, length)
sourceArray

Use: Required

Data Type: Any array

The array to be copied

sourceIndex

Use: Required in second overloaded version

Data Type: Integer

The index in sourceArray at which copying begins

destinationArray

Use: Required

Data Type: Any array

The target array

destinationIndex

Use: Required in second overloaded version

Data Type: Integer

The index in destinationArray where the first element is to be copied

length

Use: Required

Data Type: Integer

The number of elements to copy

 157

Return Value

None

Description

Makes a copy of all or part of an array.

Since arrays are reference types, when we set one array variable equal to another, we are just
assigning a new reference to the same array. For instance, consider the following code:

Dim a() As Integer = {1, 2, 3}
Dim b() As Integer
' Array assignment
b = a
' Change b
b(0) = 10
' Check a
MsgBox(a(0)) 'Displays 10

The fact that changing b(0) also changes a(0) shows that a and b point to the same array.

Rules at a Glance

• Using the first syntax, you can copy a range of values from the beginning of sourceArray to
the beginning of destinationArray. Using the second syntax, you can copy a range of
values from anywhere in destinationArray to anywhere in targetArray.

• sourceArray and destinationArray must have the same number of dimensions.
• length is the total number of elements to be copied. If sArr1 is a two-dimensional array, for

example, the statement:

Array.Copy(sArr1, 0, sArr2, 0, 3)

• copies the values from sArr(0,0), sArr(0,1), and sArr(1,0) to sArr2.
• To copy all elements, you can supply UBound(sourceArray) + 1 as an argument to

length.
• If sourceArray and destinationArray are the same, and destinationIndex lies

within the range of values being copied (that is, if the source and target ranges overlap), no
data will be lost. The method behaves as if it copies length elements from sourceArray to
a temporary buffer, then copies from the temporary buffer to destinationArray.

Example
Dim a() As Integer = {1, 2, 3}
Dim c() As Integer
' Array copy
ReDim c(UBound(a) + 1)
Array.Copy(a, c, UBound(a) + 1)
'Change c
c(0) = 20
'Check a
MsgBox(a(0)) 'Displays 1

VB .NET/VB 6 Differences

 158

Since arrays were not a reference type in VB 6, you could simply create a copy of an existing array
through assignment, thus eliminating the need for a Copy method.

Array.IndexOf Method

Class

System.Array

Syntax
Array.IndexOf(Array, Value[, startIndex[, count]])
Array

Use: Required

Data Type: Any array

The array to be searched

Value

Use: Required

Data Type: Any

The object that is searched for

startIndex

Use: Optional

Data Type: Integer

The index at which to start the search

count

Use: Optional

Data Type: Integer

The number of items to search

Return Value

The index of the first occurrence of Value in Array, or -1

Description

 159

Returns an Integer representing the index of the first occurrence of object in Array

Rules at a Glance

• Array must be a one-dimensional array.
• By default, the IndexOf method searches for Value from the beginning to the end of Array.
• If startIndex is provided without count, IndexOf searches from startIndex to the last

element of Array.
• If both startIndex and count are provided, the method searches count elements starting

at startIndex. In other words, it searches from array(startIndex) to
array(startIndex + count - 1).

• If startIndex is present and is outside of the range of the elements in array, the method
returns -1.

• If count is present and startIndex + count - 1 exceeds the total number of elements in
array, the method call generates an ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer
Dim a(99999) As Integer
For i = 0 To 99999
 a(i) = CInt(Rnd() * 100000)
Next
MsgBox(Array.IndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search.
For example:

Array.IndexOf(array:=a, value:=136500, startIndex:=100, _
 count:=1000)

Array.LastIndexOf Method

Class

System.Array

Syntax
Array.LastIndexOf(Array, Value[, startIndex, count])
Array

Use: Required

Data Type: Any array

The array to be searched

Value

 160

Use: Required

Data Type: Any

The object that is searched for

startIndex

Use: Optional

Data Type: Integer

The index at which to start the search

count

Use: Optional

Data Type: Integer

The number of elements to search

Return Value

An Integer containing the index of the last occurrence of Object in Array

Description

Returns the index of the last occurrence of Object in Array

Rules at a Glance

• Array must be a one-dimensional array.
• The LastIndexOf method has the same syntax as the IndexOf method and works the same

way as IndexOf, except that it searches from the end of the array and returns the largest index
of a matching element.

• By default, the LastIndexOf method searches for Value from the end to the beginning of
Array.

• If startIndex is provided without count, LastIndexOf searches from startIndex to the
first element of Array.

• If both startIndex and count are provided, the method searches count elements
backward starting at startIndex. In other words, it searches from array(startIndex) to
array(startIndex - count + 1).

• If startIndex is present and is outside of the range of the elements in array, the method
returns -1.

• If count is present and startIndex < count - 1, the method call generates an
ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer
Dim a(100000) As Integer

 161

For i = 0 To 99999
 a(i) = CInt(Rnd() * 100000)
Next
MsgBox(Array.LastIndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search.
For example:

Array.LastIndexOf(array:=a, value:=136500, startIndex:=100, _
 count:=50)

See Also

Array.IndexOf Method

Array.Reverse Method

Class

System.Array

Syntax
Array.Reverse(array[, startindex, endindex])
array

Use: Required

Data Type: Any array

The array to be reversed

startIndex

Use: Optional

Data Type: Integer

The index at which to start the reversal process

endIndex

Use: Optional

Data Type: Integer

The index at which to end the reversal process

Return Value

None

 162

Description

Reverses a portion of or all of the elements of an array.

Example
Dim a() As Integer = {1, 2, 3, 4, 5}
Dim i As Integer
array.Reverse(a, 1, 3)
For i = 0 To 4
 debug.Write(a(i))
Next

This code prints the sequence 14325, which is the original array 12345 with the middle section from
index 1 to index 3 reversed.

Array.Sort Method

Class

System.Array

Syntax
Array.Sort(array)
Array.Sort(array, comparer)
Array.Sort(array, index, length)
Array.Sort(array, index, length, comparer)

Array.Sort(keys, items)
Array.Sort(keys, items, comparer)
Array.Sort(keys, items, index, length)
Array.Sort(keys, items, index, length, comparer)
array

Use: Required

Data Type: Any array

The array of objects to be sorted

keys

Use: Required

Data Type: Any array

The array of keys to use for sorting. This array is also sorted.

items

Use: Required

 163

Data Type: Any array

A parallel array of values to be sorted in the order of keys, their corresponding keys

index

Use: Required

Data Type: Integer

The index at which to start the sort

length

Use: Required

Data Type: Integer

The index at which to end the reversal process

comparer

Use: Required

Data Type: IComparer interface

An object implementing the IComparer interface to be used for sorting. If Nothing, then the
IComparable implementation of each element (in the case of arrays of keys) or value type
(in the case of arrays).

Return Value

None

Description

Sorts a portion of, or sorts an entire one-dimensional array, with an optionally specified key array and
an optionally specified IComparer interface

Example
Sub sortArray()
Dim i As Integer
Dim intArray() As Integer = {9, 8, 12, 4, 5}
For i = 0 To 4
 console.WriteLine(CStr(intArray(i)))
Next
System.Array.Sort(intarray)
Console.WriteLine("Sorted:")
For i = 0 To 4
 console.WriteLine(CStr(intArray(i)))
Next
End Sub

The output is:

 164

9
8
12
4
5
Sorted:
4
5
8
9

12

Asc, AscW Functions

Class

Microsoft.VisualBasic.Strings

Syntax
Asc(string)
AscW(str)
string, str

Use: Required

Data Type: String or Char

Any expression that evaluates to a nonempty string

Return Value

An Integer that represents the character code of the first character of the string. The range for the
returned value is 0 - 255 on nonDBCS systems, but -32768 to 32767 on DBCS systems.

Description

Returns an Integer representing the character code for the first character of the string passed to it. All
other characters in the string are ignored

Rules at a Glance

• The string expression passed to the function must contain at least one character or a runtime
error is generated.

• Only the first character of the string is evaluated by Asc or AscW.

Example
Dim sChars As String
Dim iCharCode As Integer

sChars = TextBox1.Text
If Len(sChars) > 0 Then

 165

 iCharCode = Asc(sChars)
 If iCharCode >= 97 And iChar <= 122 Then
 MsgBox "The first character must be uppercase"
 End If
End If

Programming Tips and Gotchas

• Check that the string you are passing to the function contains at least one character using the
Len function, as the following example shows:

• If Len(sMyString) > 0 Then
• iCharCode = Asc(sMyString)
• Else
• MsgBox("Cannot process a zero-length string")

End If

• Use Asc within your data-validation routines to determine such conditions as whether the first
character is upper- or lowercase and whether it is alphabetic or numeric, as the following
example demonstrates:

• Private Sub Button1_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) _
• Handles Button1.Click
•
• Dim sTest As String
• Dim iChar As Integer
•
• sTest = TextBox1.Text
•
• If Len(sTest) > 0 Then
• iChar = Asc(sTest)
• If iChar >= 65 And iChar <= 90 Then
• MsgBox "The first character is UPPERCASE"
• ElseIf iChar >= 97 And iChar <= 122 Then
• MsgBox "The first character is lowercase"
• Else
• MsgBox "The first character isn't alphabetical"
• End If
• Else
• MsgBox "Please enter something in the text box"
• End If
•

End Sub

• Use the Asc function and the related Chr function to create rudimentary encryption methods.
Once you have obtained the character code for a particular character, you can perform
calculations on this code to come up with a different number and then convert this to a
character using the Chr function. To decrypt your string, simply reverse the calculation. You
may want to avoid character codes less than 20, however, since these can be interpreted as
special nonprinting characters and cause undesirable effects if displayed or printed.

• Private Sub CommandButton2_Click()
•
• Dim MyEncryptedString, MyDecryptedString As String
• Dim MyName As String = "Paul Lomax"
• Dim i As Integer
•

 166

• For i = 1 To Len(MyName)
• MyEncryptedString = MyEncryptedString & _
• Chr(Asc(Mid(MyName, i, 1)) + 25)
• Next i
•
• MsgBox("Hello, my name is " & MyEncryptedString)
•
• For i = 1 To Len(MyName)
• MyDecryptedString &= Chr(Asc(Mid(MyEncryptedString, i, 1)) - 25)

Next i
•
• MsgBox("Hello, my name is " & MyDecryptedString)

End Sub

See Also

Chr, ChrW Functions

Asin Function

Class

System.Math

Syntax
Math.Asin(d)
d

Use: Required

Data Type: Double or any valid numeric expression

A number representing a sine, which can range from -1 to 1

Return Value

A Double between -pi/2 and pi/2 that is the arcsine of d in radians

Description

Returns the arcsine of d, in radians

Rules at a Glance

• If d is out of range, the function returns NaN.
• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

 167

To convert from radians to degrees, multiply by 180/pi.

VB .NET/VB 6 Differences

The Asin function did not exist in VB 6.

See Also

Acos Function, Atan Function, Atan2 Function

Atan Function

Class

System.Math

Syntax
Math.Atan(d)
d

Use: Required

Data Type: Double or any valid numeric expression

A number representing a tangent

Return Value

A Double that is the arctangent in radians of d, in the range -pi/2 to pi/2

Description

Takes the ratio of two sides of a right triangle (d) and returns the corresponding angle in radians. The
ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

Rules at a Glance

• If d is out of range, the function returns NaN.
• This is a Shared member, so it can be used without creating any objects.

Example
Private Sub Main()

 Dim dblSideAdj As Double
 Dim dblSideOpp As Double
 Dim dblRatio As Double
 Dim dblAtangent As Double

 dblSideAdj = 50.25

 168

 dblSideOpp = 75.5

 dblRatio = dblSideOpp / dblSideAdj
 dblAtangent = Math.Atan(dblRatio)
 'convert from radians to degrees
 dblDegrees = dblAtangent * (180 / 3.142)
 MsgBox dblDegrees & " Degrees"

End Sub

Programming Tips and Gotchas

• To convert radians to degrees, multiply radians by 180/pi.
• Do not confuse Atan with the cotangent. Atan is the inverse trigonometric function of Tan,

whereas the cotangent is the reciprocal of the tangent.

VB .NET/VB 6 Differences

The Atan function corresponds to the VB 6 Atn intrinsic function.

See Also

Acos Function, Asin Function, Atan2 Function

Atan2 Function

Class

System.Math

Syntax
Math.Atan2(y, x)
x

Use: Required

Data Type: Double

The x coordinate of a point

y

Use: Required

Data Type: Double

The y coordinate of a point

Return Value

 169

A Double that is the arctangent of the ratio x/y, in radians

Description

Returns the angle in the Cartesian plane formed by the x-axis and a vector starting from the origin (0,0)
and terminating at the point (x, y). More specifically, the return value q satisfies the following:

• For (x, y) in quadrant 1, 0 < q < pi/2.
• For (x, y) in quadrant 2, pi /2 < q < pi.
• For (x, y) in quadrant 3, -pi < q < -pi /2.
• For (x, y) in quadrant 4, -pi /2 < q < 0.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Atan2 function does not exist in VB 6.

See Also

Acos Function, Asin Function, Atan Function

Beep Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
Beep

Description

Sounds a tone through the computer's speaker

Example
Private Sub Main()

 iVoid = DoSomeLongFunction()
 Beep
 MsgBox "Finished!"

End Sub

Programming Tips and Gotchas

 170

• We have found the Beep statement to be completely unreliable, and therefore we never use it
in applications intended for distribution.

• If you do decide to use the Beep statement, please remember that its overuse will not endear
you to your users!

• The frequency and duration of the tone depends on the computer's hardware. Bear in mind
that on some systems, a mouse click is louder than the beep!

• Since the successful operation of the Beep statement does not require the presence of any
multimedia hardware (such as a sound card, for example), it can be used when a system is
not configured to support sound. For example, if the following is defined in the declarations
section of a code module:

• Declare Function waveOutGetNumDevs Lib "winmm.dll" () As Long
• Declare Function PlaySound Lib "winmm.dll" _
• Alias "PlaySoundA" (ByVal lpszName As String, _
• ByVal hModule As Long, ByVal dwFlags As Long) _
• As Long
•
• Public Const SND_APPLICATION = &H80
• Public Const SND_ASYNC = &H1
• Public Const SND_FILENAME = &H20000
• Public Const SND_NODEFAULT = &H2
•
• Public HasSound As Boolean
•
• Public Function IsSoundSupported() As Boolean
• If (waveOutGetNumDevs > 0) Then _
• IsSoundSupported = True

End Function

then the following procedure takes advantage of any existing sound hardware to play a wave
file or simply beeps the built-in PC speaker if no sound hardware is found.

Private Sub Form_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 Dim intCtr As Integer
 HasSound = IsSoundSupported()
 If HasSound Then
 Call PlaySound("c:\windows\media\tada.wav", 0, _
 SND_FILENAME Or SND_NODEFAULT)
 Else
 For intCtr = 0 To 3
 Beep
 Next
 End If
End Sub

Call Statement

Syntax
[Call] procedurename[(argumentlist)]
procedurename

Use: Required

 171

Data Type: N/A

The name of the subroutine being called

argumentlist

Use: Optional

Data Type: Any

A comma-delimited list of arguments to pass to the subroutine being called

Description

Passes execution control to a procedure, function, or dynamic-link library (DLL) procedure or function

Rules at a Glance

• Use of the Call keyword is optional.
• Regardless of whether the Call keyword is used, argumentlist, if it is present, must be

enclosed in parentheses.
• If you use Call to call a function, the function's return value is discarded.

Example
Call myProcedure(True, iMyInt)

Sub myProcedure(blnFlag as Boolean, iNumber as Integer)
...
End Sub

Programming Tips and Gotchas

• To pass a whole array to a procedure, use the array name followed by empty parentheses.
• Some programmers suggest that code is more readable when the Call keyword is used to

call subroutines.

VB .NET/VB 6 Differences

• In VB 6, parentheses had to be omitted if the Call keyword was omitted and
procedurename had more than one argument. In VB .NET, parentheses are required
whenever arguments are present.

• In VB 6, if argumentlist consisted of a single argument, enclosing it in parentheses and
omitting the Call statement reversed the method by which the argument was passed to the
called function. Thus, an argument ordinarily called by value would be called by reference,
and vice versa. In VB .NET, this confusing behavior is not supported.

• In VB 6, when calling an external routine defined using the Declare statement, you can
override the default method of passing an argument by specifying the ByVal or ByRef
keywords before the argument. In VB .NET you cannot change whether an argument is
passed by value or by reference in the call to the routine.

See Also

CallByName Function

 172

CallByName Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

Yes, if Args() is omitted

Syntax
CallByName(Object, ProcName, UseCallType, Args())
Object

Use: Required

Data Type: Object

A reference to the object containing the procedure being called.

ProcName

Use: Required

Data Type: String

The name of the procedure to call.

UseCallType

Use: Required

Data Type: CallType Constant

A constant of the type CallType indicating what type of procedure is being called. CallType
constants are listed in the following table.

Constant Value Description
Method 1 The called procedure is a method.
Get 2 The called procedure retrieves a property value.
Let 4 The called procedure sets the value of a property.
Args

Use: Optional

Data Type: Any

A ParamArray argument representing the arguments required by the procedure being called.

 173

Return Value

Depends on the return value (if any) of the called procedure

Description

Provides a method for calling a class member by name.

Since ProcName is a string expression, rather than the literal name of a routine, it is possible to call
routines dynamically at runtime using a string variable to hold the various procedure names.

Rules at a Glance

• The return type of CallByName is the return type of the called procedure.
• ProcName is not case sensitive.
• UseCallType can either be a numeric value or a constant of the CallType enumeration. In

the latter case, the enumeration name must be specified along with the constant name, as in
CallType.Method.

• Args() must be a parameter array. A parameter array is an array used to contain function,
procedure, or property arguments that can have a variable number of elements.

Programming Tips and Gotchas

• Since the member to be called is not known at compile time, the performance of CallByName
is inferior to calling members directly by literal name.

• Using CallByName does not necessarily require that Option Strict be set Off.

Example

The following example uses a parameter array to call the Multiply method of a class named Math:

Imports Microsoft.VisualBasic
Imports System

Module modMain

Public Sub Main()

Dim oMath As New Math
Dim dArr() As Double = {1,2,3}

' Call using ParamArray
MsgBox(CallByName(oMath, "Multiply", CallType.Method, dArr))

End Sub

End Module

Public Class Math

Public Function Multiply(a() As Double) As Double

Dim result as double = 1.0
Dim intCtr As Integer
Dim intIndex As Integer = 0

 174

for intIndex = 0 to ubound(a)
 result = result * a(intIndex)
next

Multiply = result

End Function

End Class

VB .NET/VB 6 Differences

In VB 6, you don't have to specify VbCallType as the name of the enumeration to access its
constants. In VB .NET, you must specify CallType as the name of the enumeration to access its
constants.

See Also

Call Statement

CBool Function

Named Arguments

No

Syntax
CBool(expression)
expression

Use: Required

Data Type: String or Numeric

Any numeric expression or a string representation of a numeric value

Return Value

expression converted to Boolean data type (True or False)

Description

Casts expression as a Boolean data type

Rules at a Glance

When a numeric value is converted to Boolean, any nonzero value is converted to True, and zero is
converted to False.

 175

If the expression to be converted is a string, the string must be capable of being evaluated as a
number, or it must be "True" or "False". Any other string generates a runtime error. For example,
CBool("one") results in a type mismatch error, whereas CBool("1") is converted to True, and
CBool("True") is converted to True.

Programming Tips and Gotchas

• You can check the validity of the expression prior to using the CBool function by using the
IsNumeric function.

• Like most of the conversion functions, CBool is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

CByte Function

Named Arguments

No

Syntax
CByte(expression)
expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates to a number between 0 and 255

Return Value

expression converted to Byte data type

Description

Converts expression to a Byte data type

Rules at a Glance

• If the expression to be converted is a string, the string must be capable of conversion to a
numeric expression; this can be checked using the IsNumeric function.

• If expression evaluates to less than 0 or more than 255, a runtime error is generated.
• If the value of expression is not a whole number, CByte rounds the number prior to

conversion.

Example
If IsNumeric(sMyNumber) Then
 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then
 BytMyNumber = CByte(sMyNumber)

 176

 End If
End If

Programming Tips and Gotchas

• Check that the value you pass to CByte is neither negative nor greater than 255.
• Use IsNumeric to ensure that the value passed to CByte can be converted to a numeric

expression.
• When using CByte to convert floating point numbers, fractional values up to but not

including .5 are rounded down, while values above but not including .5 are rounded up. Values
whose fractional component is exactly equal to .5 are rounded up if their integral component is
odd and down if their integral component is even.

• The CByte function converts an expression to an unsigned byte data type. To convert
expression to a signed byte data type, create an instance of the SByte class and call its
Parse method.

• Like most of the conversion functions, CByte is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

CChar Function

Named Arguments

No

Syntax
CChar(expression)
expression

Use: Required

Data Type: String

Any string expression

Return Value

A value of type Char

Description

Converts the first character in a string expression to a Char data type

Rules at a Glance

CChar extracts the first character of expression and converts it to a Char data type.

Example
MsgBox(CChar("abc")) ' Displays a
MsgBox(CChar("56")) ' Displays 5

 177

Programming Tips and Gotchas

• If you wish to convert a numeric code to its corresponding Char data type, use the ChrW
function.

• Like most of the conversion functions, CChar is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Chr, ChrW Functions

CDate Function

Named Arguments

No

Syntax
CDate(expression)
expression

Use: Required

Data Type: String or Numeric

Any valid representation of a date and time

Return Value

expression converted into a Date data type.

Description

Converts expression to a Date data type.

The format of expression—the order of day, month, and year—is determined by the locale setting of
the local computer. To be certain a date is recognized correctly by CDate, the month, day, and year
elements of expression must be in the same sequence as the local computer's regional settings;
otherwise, the CDate function has no idea, for example, that 4 was supposed to be the fourth day of
the month, not the month of April.

Rules at a Glance

• You can use any of the date delimiters specified in your computer's regional settings; for most
systems, this includes ,, /, -, and .

• The earliest date that can be handled by the Date data type is 01/01/100. The latest date that
can be handled by the Date data type is 12/31/9999.

 178

Programming Tips and Gotchas

• Use the IsDate function to determine if expression can be converted to a date or time.
• If you pass an empty string to CDate, an error is generated.
• A modicum of intelligence has been built into the CDate function. It can determine the day and

month from a string, regardless of their position in the string; this applies only where the day
number is larger than 12, which automatically distinguishes it from the number of the month.
For example, if the string "30/12/97" is passed into the CDate function on a system expecting
a date format of mm/dd/yy, CDate sees that 30 is too large to represent a month and thus
treats it as the day. This can lead to problems because if we accidentally pass a string such as
"30/12/97" instead of the intended "3/12/97," then VB does not issue an error message!

• If we pass a string whose year specification is less than three characters in length, then VB
interprets the year as belonging to the twenty-first century. For instance, the string "1/1/1" is
interpreted as "1/1/2001."

• If you do not specify a year, the CDate function uses the year from the current date on your
computer.

• Like most conversion functions, CDate is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function
call into inline code.

CDbl Function

Named Arguments

No

Syntax
CDbl(expression)
expression

Use: Required

Data Type: Numeric or String

-1.79769313486232E308 to -4.94065645841247E-324 for negative values, and
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Return Value

expression cast as a Double data type.

Description

Converts expression to a Double data type

Rules at a Glance

• If the value of expression is outside the range of the double data type, an overflow error is
generated.

 179

• expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

Example
Dim dblMyNumber as Double
If IsNumeric(sMyNumber) then
 dblMyNumber = CDbl(sMyNumber)
End If

Programming Tips and Gotchas

• When converting a string representation of a number to a numeric value, the data type
conversion functions, such as CDbl, are preferable to the older function, Val. This is because
the data type conversion functions take account of the system's regional settings, whereas Val
recognizes only the period as a decimal separator. For example, if a user inputs a value of
6,231,532.11, CDbl correctly converts it to a double with a value of 6231532.11, while Val
returns a value of 6.

• Use IsNumeric to test whether expression evaluates to a number.
• Like most conversion functions, CDbl is not actually a function in the Microsoft.VisualBasic

namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function
call into inline code.

See Also

CSng Function

CDec Function

Named Arguments

No

Syntax
CDec(expression)
expression

Use: Required

Data Type: Numeric or String

The range is +/-79,228,162,514,264,337,593,543,950,335 for numbers with no decimal places.
The range is +/-7.9228162514264337593543950335 for numbers with up to 28 decimal
places. The smallest possible nonzero number is 0.0000000000000000000000000001.

Return Value

expression cast as a Decimal type

Description

 180

This function casts expression as a Decimal value.

Rules at a Glance

• If the value of expression is outside the range of the Decimal data type, an overflow error is
generated.

• expression must evaluate to a numeric value; otherwise a type-mismatch error is generated.
To prevent this, it can be tested beforehand with the IsNumeric function.

Example
Dim decMyNumber As Decimal
If IsNumeric(sMyNumber) then
 decMyNumber = CDec(sMyNumber)
End If

Programming Tips and Gotchas

• The Decimal data type replaces the VB 6 Currency data type and is appropriate for very large,
very small, or very high precision numbers.

• Use IsNumeric to test whether expression evaluates to a number.
• When converting a string representation of a number to a numeric, you should use the data

type conversion functions—such as CDec—instead of Val, because the data type conversion
functions take account of the system's regional settings. In particular, the CDec function
recognizes the thousands separator if it is encountered in the string representation of a
number. For example, if the user inputs the value 1,827,209.6654, CDec converts it to a the
decimal value 1827209.6654, while Val converts it to a Double value of 1.

• Like most of the conversion functions, CDec is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

Ceiling Function

Class

System.Math

Syntax
Math.Ceiling(a)
a

Use: Required

Data Type: Double

Return Value

A Double containing the smallest integer greater than or equal to the argument a.

Description

 181

Returns the smallest integer greater than or equal to the argument a.

Example
Console.WriteLine(Math.Ceiling(12.1)) ' Returns 13
Console.WriteLine(Math.Ceiling(12.5)) ' Returns 13
Console.WriteLine(Math.Ceiling(-12.5)) ' Returns -12
Console.WriteLine(Math.Ceiling(-12.8)) ' Returns -12

Rules at a Glance

• Because this function can only accept numeric values, you may want to check the value you
pass using the IsNumeric function to prevent generating an error.

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Ceiling function is new to the .NET Framework.

See Also

Floor Function

ChDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
ChDir(path)
path

Use: Required

Data Type: String

The path of the directory to set as the new default directory

Description

Changes the current working (default) directory.

Rules at a Glance

• path can be an absolute or relative reference.
• Changing the default directory does not change the default drive; it only changes a particular

drive's default directory.

 182

Example
ChDir("c:\program files\my folder\")
ChDir("..") 'c:\program files is now the default directory.

Programming Tips and Gotchas

• The single dot (".") represents the current directory and the double dot ("..") represents
the parent of the current directory. If the root directory is the current directory, the statement:

ChDir("..")

• does not change the current directory and does not produce a syntax error.
• If path is not found, or a FileNotFoundExeception exception, 76, "Path not found," is

generated. However, if path refers to another machine on the network, error 75, "Path/File
access error," is generated.

• Although you can use a network path such as \\NTSERV1\d$\TestDir\ to change the current
directory on the network admin share \\NTSERV1\d$, you can't access this drive using
ChDrive without having the drive mapped to a drive letter, which makes using network paths
with ChDir a little pointless!

• Use CurDir to determine the current directory for a particular drive.

VB .NET/VB 6 Differences

In VB .NET, ChDir is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB .NET version requires parentheses around the path
argument.

See Also

ChDrive Procedure, CurDir Function

ChDrive Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
ChDrive(drive)
drive

Use: Required

Data Type: String or Char

The letter of the drive (A-Z) to set as the new default drive

Description

 183

Changes the current working (default) disk drive

Rules at a Glance

• If a zero-length string is supplied, the drive is not changed.
• If driveletter consists of more than one character, only the first character is used to

determine the drive.

Example

The following example demonstrates a utility function that uses ChDrive to determine if a given drive is
available. By centralizing the test, this reduces the amount of coding required each time you need to
use ChDrive.

Private Function IsAvailableDrive(sDrive As String) _
 As Boolean

 'if an error occurs goto to the next line of code
 On Error Resume Next

 Dim sCurDrv As String

 'get the letter of the current drive
 sCurDrv = Left$(CurDir, 1)

 'attempt to change the drive
 ChDrive(sDrive)

 'did an error occur?
 If Err.Number = 0 Then
 'no - this drive is OK to use
 IsAvailableDrive = True
 Else
 'yes - don't use this drive
 IsAvailableDrive = False
 End If
 'set the drive back to what it was
 ChDrive(sCurDrv)

End Function

The following code snippet shows how this function could be implemented within your application:

 If IsAvailableDrive(sDrv) Then
 ChDrive(sDrv)
 Else
 MsgBox ("Cannot use Drive " & sDrv & ":\")
 End If

Programming Tips and Gotchas

• The current directory is unaffected by the ChDrive procedure.
• Since ChDrive only processes the first letter of the drive string, it's not possible to supply a

piped name as a network drive name (for example, \\NTServer\). Instead, the machine on
which your program runs must have a drive letter mapped to the network resource using
Explorer or other network commands. If drive is specified as a UNC path, the function raises
error number 5, "Invalid procedure call or argument," or generates an ArgumentException
exception.

 184

• If drive is invalid, the function returns error number 68, "Device unavailable," or generates an
IOException exception.

• To determine which drive is current, call the CurDir function with no arguments. Then use the
Left function to extract its first character, as the following code fragment illustrates:

Dim sDrive As String = Left(CurDir(), 1)

VB .NET/VB 6 Differences

In VB .NET, ChDrive is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB .NET version requires parentheses around the
drive argument.

See Also

ChDir Procedure, CurDir Function

Choose Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax
Choose(index, item_1[,item_2, ...[, item_n]])
index

Use: Required

Data Type: Single

An expression that evaluates to the (1-based) index of the object to choose from the list

item_1-item_n

Use: Required

Data Type: Any

A comma-delimited list of values from which to choose, or a ParamArray containing values
from which to choose

Return Value

The object chosen from the list.

 185

Description

Programmatically selects an object from a predefined list of objects (which are passed as parameters
to the function) based on its ordinal position in the list. Using Choose is a simpler alternative to
populating an array with fixed values.

Rules at a Glance

• The list of items is based from 1, rather than the more usual VB default base of 0.
• Because the list consists of objects, you can mix data types within the list; you are not forced

to use the same data type for each item in the list. For example, item_1 can be a string, while
item_2 can be a long integer, and item_3 can be a floating point number.

• If the rounded value of index does not correspond to an item in the list, the function returns a
null string.

Programming Tips and Gotchas

• If index is not a whole number, it is rounded before being used.
• It is important to note that all items in the list are evaluated. Thus, if we use functions or

expressions as parameters, all of the functions are called or all of the expressions are
evaluated.

• By providing item_1 through item_n in the form of a ParamArray, the list of values can be
expanded or contracted programmatically at runtime.

• You can save memory and create more efficient and self-documenting code by using the
Choose function instead of creating an array and populating it with fixed values each time the
program executes. As the following example illustrates, you can turn several lines of code into
one:

• Dim vMyArray(3)
• vMyArray(1) = "This"
• vMyarray(2) = "That"
• vMyArray(3) = "The Other"
• ...
• Sub chooseFromArray(iIndex as Integer)
• vResult = vMyArray(iIndex)
• End Sub
•
• Sub chooseFromChoose(sglIndex as Single)
• vResult = Choose(sglIndex, "This", "That", "The Other")

End Sub

VB .NET/VB 6 Differences

• In VB 6, item_1 through item_n must only take the form of a comma-delimited list. In
VB .NET, these arguments can also take the form of an array. This allows the list of choices to
be modified dynamically at runtime.

• In VB 6, idx must be greater than .5 and less than .5 plus the number of items in the list, or a
runtime error results. In VB .NET, if idx is out of range, the function returns a null string.

See Also

Switch Function

Chr, ChrW Functions

 186

Class

Microsoft.VisualBasic.Strings

Syntax
Chr(charcode)
ChrW(charcode)
charcode

Use: Required

Data Type: Integer

An expression that evaluates to a Unicode character code

Return Value

A Char that contains the character represented by charcode

Description

Returns the character represented by the charcode

Programming Tips and Gotchas

• Use Chr(34) to embed quotation marks inside a string, as shown in the following example:
• sSQL = "SELECT * FROM myTable _

 where myColumn = " & Chr(34) & sValue & Chr(34)

• The following table lists some of the more commonly used character codes that are supplied
in the call to the Chr function:

Code Constant Description

0 vbNullChar For C/C++ string functions, the null character required to
terminate standard strings

8 vbBack A backspace character
9 vbTab A tab character
10 vbLf A linefeed character
13 vbCr A carriage return character
34 ControlChars.Quote A quotation mark

VB .NET/VB 6 Differences

• The ChrB function is no longer supported.
• The VB 6 version of the Chr function returns a String; the VB .NET version returns a Char.

See Also

 187

Asc, AscW Functions

CInt Function

Named Arguments

No

Syntax
CInt(expression)
expression

Use: Required

Data Type: Numeric or String

The range of expression is -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value

expression cast as an Integer

Description

Converts expression to an Integer; any fractional portion of expression is rounded.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

• If the value of expression is outside the range of the Integer data type, an overflow error is
generated.

• When the fractional part of expression is exactly .5, CInt always rounds it to the nearest
even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example
Dim iMyNumber as Integer
If IsNumeric(sMyNumber) then
 iMyNumber = CInt(sMyNumber)
End If

Programming Tips and Gotchas

• When converting a string representation of a number to a numeric data type, you should use
the data type conversion functions—such as CInt—instead of Val, because the data type
conversion functions take into account the system's regional settings. In particular, CInt
recognizes the thousands separator if it's present in expression, whereas Val does not. For
example, if expression is 1,234, then CInt successfully converts it to the integer value 1234,
while Val converts it to 1.

 188

• Use IsNumeric to test whether expression evaluates to a number before performing the
conversion.

• CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional part
of a number. Also, Fix and Int always return the same type of value as was passed in.

• CInt converts an expression to a signed 32-bit integer. To convert an expression to an
unsigned 32-bit integer, create an instance of the UInt32 structure, and call its Parse method.

• Like most of the conversion functions, CInt is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The VB .NET CInt function actually corresponds to the VB 6 CLng function, since both return 32-bit
integers.

See Also

CLng Function, CShort Function

Class Statement

Syntax
[accessmodifier] [inheritability] ClassName
 statements
End Class
accessmodifier

Use: Optional

Type: Keyword

The possible values of accessmodifier are Public, Private, and Friend. For more
information, see Section 3.7 in Chapter 3.

inheritability

Use: Optional

Type: Keyword

One of the keywords, MustInherit or NotInheritable, must be used. MustInherit
specifies that objects of this class cannot be created, but that objects of derived classes can
be created. NotInheritable specifies that this class cannot be used as a base class.

ClassName

Use: Required

Type: String literal

This is the name of the class.

 189

Description

Defines a class and delimits the statements that define that class' variables, properties, and methods.
For a detailed discussion with examples, see Chapter 3.

Rules at a Glance

• ClassName follows standard Visual Basic variable-naming conventions.
• Within a class code block, members are declared as Public, Private, Protected,

Friend, or Protected Friend. The Dim keyword is equivalent to Private when used in
class modules (but it is equivalent to Public in structures). Property declarations are
automatically Public.

• The Class...End Class construct can include the following elements:

Private variable or procedure declarations

These items are accessible within the class, but do not have scope outside of the class.

Public variable or procedure declarations

Public variables are public properties of the class; Public procedures are public methods
of the class.

Property declarations

These are the public properties of the class. Default properties can be declared by using the
Default keyword.

• To define a custom constructor within a class module, define a subroutine called New. Note
that the New subroutine (like any other procedure) can be overloaded.

• To define a destructor within a class module, define a function called Destruct. Destructors
cannot be overloaded.

• To create an object of a class, use syntax such as:
• Dim oObj As CClass

oObj = New CClass(arguments_for_constructor)

or:

Dim oObj = New CClass(arguments_for_constructor)

or:

Dim oObj As CClass = New CClass(arguments_for_constructor)

Programming Tips and Gotchas

• A property defined as a simple public variable cannot be designated the class' default member.
• According to accepted object-oriented programming practices, public properties should be

defined using the Property statement, since this allows the value of a property to be
modified in a controlled and predictable way. It allows you to validate data and allows your
program to know when a property value is being changed. Because this is not possible using
simple public variables, defining a public variable that is accessible outside of the class is
considered poor programming practice.

• The Me or MyClass keywords can be used within the Class...End Class construct to
reference the class.

 190

VB .NET/VB 6 Differences

The Class...End Class construct is new to VB .NET. In VB 6, each class was defined in its own
class module, which corresponded to a separate CLS file.

See Also

Property Statement, Structure...End Structure Statement

Clipboard Class

Namespace

System.Windows.Forms

Createable

No

Description

The Clipboard object represents the Windows Clipboard, an object that allows data to be shared
across processes. The members of the Clipboard class allow data to be placed in and retrieved from
the Clipboard.

The Clipboard object can be created as follows:

Dim obj As Clipboard

However, because the Clipboard object's members are shared, you do not need to instantiate the
Clipboard object to access its properties and methods. Hence, you can place data on the Clipboard,
for instance, with the following code fragment:

Clipboard.SetDataObject(strData)

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Methods
GetDataObject +
SetDataObject +

See Also

Clipboard.GetDataObject Method, Clipboard.SetDataObject Method

Clipboard.GetDataObject Method

 191

Class

System.Windows.Forms.Clipboard

Syntax
Clipboard.GetDataObject()

Return value

An IDataObject object that represents the data currently on the clipboard

Description

Retrieves data from the Clipboard

Rules at a Glance

• If the Clipboard contains no data, the GetDataObject method returns Nothing.
• Once you have an IDataObject object, you can use the members of the IDataObject class

to get information about the Clipboard data, as shown in the following example. The relevant
IDataObject members for Clipboard manipulation in VB are GetData, GetDataPresent, and
GetFormats.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject
Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

' Fire GetData method of IDataObject object to get clipboard data
obj = di.GetData(DataFormats.Text, False)

' Show the text, if any
If obj Is Nothing Then
 MsgBox("No text on clipboard.")
Else
 MsgBox(CStr(obj))
End If

VB .NET/VB 6 Differences

While the .NET Base Class Library uses the GetDataObject method to retrieve all data from the
Clipboard, the Clipboard object in VB 6 included the GetFormat, GetData, and GetText methods to
retrieve Clipboard data.

See Also

Clipboard Class, Clipboard.SetDataObject Method, IDataObject Interface

 192

Clipboard.SetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax
SetDataObject(data)
data

Use: Required

Data Type: Any

Data to place on the Clipboard

Description

Places data on the Clipboard

Example

The following example places text on the clipboard:

Dim s As String = "donna"
clipboard.SetDataObject(s)

VB .NET/VB 6 Differences

While the .NET Base Class Library uses the SetDataObject method to place all data on the Clipboard,
the Clipboard object in VB 6 includes two methods, SetData and SetText, depending on the format of
the data to be placed on the Clipboard.

See Also

Clipboard Class, Clipboard.GetDataObject Method, IDataObject Interface

CLng Function

Named Arguments

No

Syntax
CLng(expression)

 193

expression

Use: Required

Data Type: Numeric or String

Ranges from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807; fractions are
rounded.

Return Value

expression cast as a Long data type

Description

Converts expression to a long integer; any fractional element of expression is rounded.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

• If the value of expression is outside the range of the Long data type, an overflow error is
generated.

• When the fractional part is exactly .5, CLng always rounds it to the nearest even number. For
example, .5 rounds to 0, and 1.5 rounds to 2.

Example
Dim lngMyNumber as Long
If IsNumeric(sMyNumber) then
 lngMyNumber = CLng(sMyNumber)
End If

Programming Tips and Gotchas

• When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CLng—instead of Val, because the data type conversion
function takes into account the system's regional settings. In particular, CLng is able to
recognize the thousands separator if it's included in expression, while Val cannot. For
example, if a user enters a value of 1,098,234 into a textbox, CLng converts it to the long
integer 1098234, but Val converts it to a value of 1.

• Use IsNumeric to test whether expression evaluates to a number.
• CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional

part of a number. Also, Fix and Int always return the same type of value as was passed in.
• CLng converts an expression to a signed long integer. To convert an expression to an

unsigned long integer, create an instance of the UInt64 structure and call its Parse method.
• Like most of the conversion functions, CLng is not actually a function in the

Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The VB .NET CLng function returns a 64-bit integer, whereas the VB 6 CLng function returns a 32-bit
integer.

 194

See Also

CInt Function , CShort Function

CObj Function

Named Arguments

No

Syntax
CObj(expression)
expression

Use: Required

Data Type: Any

Return Value

expression cast as an Object data type

Description

Converts any expression that can be interpreted as an object to Object

Rules at a Glance

expression can be any data type, including a strongly typed object, as the following code fragment
illustrates:

Dim oSomeClass As New CSomeClass
Dim oObj As Object
oObj = CObj(oSomeClass)

Example

The following code:

Dim obj As Object
obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

Programming Tips and Gotchas

• The operation of the CObj function is possible because all VB .NET data types are either
structures or objects.

 195

• Once a data type is converted to type Object, you can display its value by calling its ToString
method, as in the following code fragment:

• Dim bFlag As Boolean = True
•
• oObj = CObj(bFlag)

MsgBox(oObj.ToString)

• Instead of using the CObj function to convert a strongly typed object to a generic Object data
type, you can also use simple assignment, as the following code fragment illustrates:

• Dim oSomeClass As New CSomeClass
• Dim oObj As Object

oObj = oSomeClass

• Like most of the conversion functions, CObj is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The CObj function is new to VB .NET. The closest equivalent in VB 6 is CVar, which converts a data
type to a Variant.

Collection Class

Namespace

Microsoft.VisualBasic

Createable

Yes

Syntax
Dim objectvariable As [New] Collection
objectvariable

Use: Required

Data Type: Collection

The name of the Collection object

Description

A Collection object allows you to store members of any data type, including object data types or even
other collection objects, and to retrieve them using a unique key.

Collection objects allow us to create a form of associative array, which is an array whose members are
indexed by something more meaningful than an integer. The real power of a collection comes by using
collections with class objects. The Collection object is discussed in more detail in Chapter 2.

 196

Collection objects are created in exactly the same way as other objects, as in:

Dim obj As New Collection

or:

Dim obj As Collection
obj = New Collection

In the former syntax, the Collection object is created at the time that the obj variable is declared,
which may be sooner than you actually need the Collection object. The latter syntax gives you more
control over the creation process.

Rules at a Glance

• You can use a Collection object to store data of any data type, including object types and even
other Collection objects.

• The Add method of the Collection object is used to add items to the collection (see the
Collection.Add entry).

• Members of a collection can be accessed using either their ordinal number or their key,
assuming that one was assigned at the time that the member was added to the collection (see
the Collection.Item entry).

• The first member in a collection is stored at ordinal position 1 (not at 0, as with arrays).
• The Count method returns the number of members in the collection (see the Collection.Count

entry).
• The Remove method removes items from a collection (see the Collection.Remove entry).

Example

This example shows how you can nest one collection within another collection. We create 10
instances of colSubCollection, each containing two integer values. These colSubCollection
objects are stored in the collection named colMainCollection. The code also shows how to read
the values of colMainCollection and colSubCollection.

Sub testCollection()
 'declare objects for the main and sub collections
 'creating a new instance of the main collection
 'in the process
 Dim colMainCollection As New Collection
 Dim colSubCollection As Collection
 Dim i As Integer

 For i = 1 To 10
 'create a new instance of the sub collection object
 colSubCollection = New Collection
 'populate the sub collection with two integer values
 colSubCollection.Add(Item:=i + 6, _
 Key:="MySixPlusVal")
 colSubCollection.Add(Item:=i + 3, _
 Key:="MyThreePlusVal")
 'now add the sub collection to the main collection
 'using the count converted to a string as the key
 colMainCollection.Add(Item:=colSubCollection, _
 Key:=CStr(i))
 'destroy the reference the sub collection
 colSubCollection = Nothing
 Next i

 197

 MsgBox(colMainCollection.Count)

 For i = 1 To colMainCollection.Count
 'use the Item method to obtain a reference to the
 'subcollection
 colSubCollection = _
 colMainCollection.Item(CStr(i))
 'display the values held in the sub collection.
 Console.WriteLine("6 + " & i & " = " & _
 colSubCollection.Item("MySixPlusVal"))
 Console.WriteLine("3 + " & i & " = " & _
 colSubCollection.Item("MyThreePlusVal"))
 'destroy the reference to the sub collection
 colSubCollection = Nothing
 Next i
End Sub

Programming Tips and Gotchas

• A highly efficient method of enumerating the members of a collection is to use the For
Each...Next loop, as the following example shows:

• Dim colMyCollection As New Collection
• Dim colSubCollection As Collection
•
• For i = 1 To 10
• Set colSubCollection = New Collection
• colSubCollection.Add Item:=i + 6, _
• Key:="MySixPlusVal"
• colSubCollection.Add Item:=i + 3, _
• Key:="MyThreePlusVal"
• colMyCollection.Add Item:=colSubCollection, _
• Key:=CStr(i)
• Set colSubCollection = Nothing
• Next i
•
• For Each colSubCollection In colMyCollection
• MsgBox colSubCollection.Item("MySixPlusVal")

Next

• Interestingly, although most Visual Basic data types are merely wrappers for data types in the
Base Class Library, the Collection object is a "native" VB data type that's derived from
System.Object and implements the ICollection, IEnumerable, and IList interfaces.
This can be seen from the following code fragment:

• Dim oColl As New Collection
• Dim oType As Type, oInt As Type
•
• oType = oColl.GetType()
• Console.WriteLine("Type: " & oType.ToString)
• Console.WriteLine("Base Type: " & oType.BaseType.ToString)
• Dim oTypes() As Type = oType.GetInterfaces
• For Each oInt in oTypes
• Console.WriteLine("Interface: " & oInt.ToString)

Next

See Also

 198

Collection.Add Method, Collection.Count Property, Collection.Item Method,
Collection.Remove Method, Hashtable Class, Queue Class, Stack Class

Collection.Add Method

Class

Microsoft.VisualBasic.Collection

Syntax
objectvariable.Add item [, key, before, after]
objectvariable

Use: Required

Data Type: Collection Object

The name of the Collection object to which an item is to be added

item

Use: Required

Data Type: Object

An object of any type that specifies the member to add to the collection

key

Use: Optional

Data Type: String

A unique string expression that specifies a key string that can be used, instead of a positional
index, to access a member of the collection

before

Use: Optional

Data Type: Object

The member to be added placed in the collection before the member identified by the before
argument (more on this in Rules at a Glance)

after

Key: Optional

Data Type: Object

 199

The member to be added placed in the collection after the member identified by the after
argument (more on this in Rules at a Glance)

Description

Adds an object to a collection

Rules at a Glance

• If you do not specify a before or after value, the member is appended to the end of the
collection (in index order).

• If you do not specify a key value, you cannot access this member using a key, but instead
must access it either by using its ordinal number or by enumerating all the members of the
collection with the For Each...Next construct. Thus, keys are highly recommended.

• The before or after argument can refer to an index or a key. For instance, consider the
following code:

• Dim c As New Collection()
• c.Add("donna", "111")
• c.Add("steve", "222")
• 'c.Add("bill", "333", "222")
• 'c.Add("bill", "333", 2)

MsgBox(c.Item(2))

Both of the commented lines of code adds the item "bill" between "donna" and "steve." The
first line uses the key to specify the before object, and the second line specifies the ordinal
position of the before object.

• Key values must be unique or an error (runtime error 457, "This key is already associated with
an element of this collection") is generated.

• You can specify a before or after position, but not both.

Example
colComposers.Add(Item:="Ludwig von Beethoven" _
 Key:="Beethoven")

Programming Tips and Gotchas

• Using named parameters helps to self-document your code:
• colMyCollection.Add Item:="VB .NET Language in a Nutshell" _

 Key:="Title"

• If your key parameter is a value being brought in from outside your program, you must ensure
that each value is always unique. One method for doing this is illustrated in the entry for the
Collection.Item Method.

See Also

Collection Class, Collection.Count Property, Collection.Item Method, Collection.Remove
Method

Collection.Count Property

 200

Class

Microsoft.VisualBasic.Collection

Syntax
objectvariable.Count
objectvariable

Use: Required

Data Type: Collection Object

Object variable referring to a Collection object

Description

Returns an Integer containing the number of members in the collection.

Rules at a Glance

Collections are 1-based; that is, the index of the first element of a collection is 1. In contrast, arrays are
0-based; the index of the first element of an array is 0.

Example
For i = 1 To colMyCollection.Count
 Set colSubCollection = colMyCollection.Item(CStr(i))
 MsgBox colSubCollection.Item("Name")
 Set colSubCollection = Nothing
Next i

Programming Tips and Gotchas

Because collections are 1-based, you can iterate the members of a collection by using index values
ranging from 1 to the value of objectvariable.Count.

See Also

Collection Class, Collection.Add Method, Collection.Item Method, Collection.Remove
Method

Collection.Item Method

Class

Microsoft.VisualBasic.Collection

 201

Syntax
objectvariable.Item(index)
objectvariable

Use: Required

Data Type: Collection Object

An object variable of type Collection

index

Use: Required

Data Type: Integer or String

Either the index (the ordinal position) of the object in the collection, or the unique key name
belonging to the object

Description

Returns the member of the collection for the specified key or ordinal position.

Programming Tips and Gotchas

• When writing wrapper classes for collections, you can make your object model more readable
by making the name of the property that wraps the Item method the same as the name of the
object obtained from the collection. For example, if your collection class is called Employees
and is a collection of Employee records, your object model reads much better to have an
Employee Property procedure, as follows:

• Public Property Employee(vKey as Object) As Boolean
• Get
• Employee = mcolEmployees.Item(vKey)
• End Get
• . . .

End Property

Note that in the previous Property procedure, the parameter is passed as an object so that the
argument can be either a string (the item's key) or an integer (the item's ordinal position).

• There is no Exists method in the Collection object, so you cannot find out in advance if a
particular key exists within the collection. However, you can create an Exists function by
calling the Item method with a given key and returning an appropriate value based on whether
an error occurred, as the following code shows:

• Public Function Exists(ByVal oKey As Object) As Boolean
• Try
• moValue = mCollection.Item(oKey)
• Exists = True
• Catch e As NullReferenceException
• Exists = False
• End Try

End Function

 202

• The Item method is the default member of the Collection object, and since it is parameterized,
we do not need to include an explicit call to the Item method. The following two statements, for
example, are identical to one another:

• set objMember = objCollection.Item(6)
set objMember = objCollection(6)

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Remove
Method

Collection.Remove Method

Class

Microsoft.VisualBasic.Collection

Syntax
objectvariable.Remove (index)

or:

objectvariable.Remove (key)
objectvariable

Use: Required

Data Type: Collection Object

An object variable of the Collection type

index

Use: Required

Data Type: Integer

The ordinal position of the item to remove

key

Use: Required

Data Type: String

The key of the item to remove

Description

Removes a member from a collection.

 203

Example
colMyCollection.Remove ("Name")

Programming Tips and Gotchas

• Members of the collection that follow the removed member are automatically moved
downward by one ordinal position; therefore, no gaps are left in the collection.

• Because the collection is reindexed after each deletion, you should be sure not to delete a
member of the collection based on a stored numeric value of index, since this value could
change. Instead, you should either delete the member by key or retrieve the index value just
before calling the Remove method.

• If you are deleting multiple members of a collection by numeric index value, you should delete
them backwards—from highest index value to lowest—because the collection is reindexed
after each deletion.

• If you are using a collection as the basis for a class module, or if you are using functions in
your application to wrap and enhance the limited functionality of a collection, you can include a
Clear method to remove all the members in your collection. The method should be written to
remove the member in position 1 until no members are left, as the following code
demonstrates:

• Public Sub Clear()
•
• Dim i As Integer
•
• For i = 1 To mcolMyCollection.Count
• mcolMyCollection.Remove(1)
• Next i
•

End Sub

• Alternately, you could do the same thing by working from the end of the collection forward, as
the following code illustrates:

• Dim intCtr As Integer
•
• For intCtr = objCollec.Count To 1 Step -1
• objCollec.Remove(intCtr)

Next

• When using named arguments, providing an index value with the key:= keyword or providing
a key name with the index:= keyword generates a runtime error.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Item Method

ColorDialog Class

Namespace

System.Windows.Forms

 204

Createable

Yes

Description

Represents a common dialog box for selecting a color.

The ColorDialog object has properties for setting the initial appearance and functionality of the color
dialog box, a property for returning the color selected by the user, and a method for showing the dialog
box.

Selected ColorDialog Members

The following provides a brief description of the more important members of the ColorDialog class:

AllowFullOpen property

Returns or sets a Boolean value indicating whether the user can use the dialog box to define
custom colors. The default is True.

AnyColor property

Returns or sets a Boolean value indicating whether the dialog box displays all available colors,
although in Beta 2 of VB .NET, this property seems to have no effect. The default is False.

Color property

Returns an instance of a Color structure, which contains information about the color selected
by the user. The Color structure, which is a type belonging to the System.Drawing namespace,
has a number of members, among which are:

• Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip,
MistyRose, and MediumSeagreen. These properties return a Color structure.

• The Name property, which returns the name of the color, or its ARGB value for
custom colors. (The A component is the alpha component of the color, which
determines the color's opacity.)

• The R property, G property, and B property, which return a byte specifying the red,
green, or blue color component of the RGB color value, respectively.

• The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give
information about the color.

CustomColors property

Represents an array of Integers used to set or return the set of custom colors that will be
shown in the ColorDialog dialog box.

FullOpen property

Represents a Boolean property that sets or retrieves the value indicating whether the dialog
box is opened with the controls used to create custom visible controls. (The default is False,
but the user can always click the Custom Colors button to display the custom colors controls.)

Reset method

 205

Resets the dialog box by setting all options and custom colors to their default values and
setting the selected color to black.

SolidColorOnly property

For systems displaying 256 colors or less, if this property is set to True, restricts the dialog
box to solid colors only, that is, to colors that are not composites of other colors.

VB .NET/VB 6 Differences

While the ColorDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

Example

The following code asks the user for a color and displays that color:

Dim cd As New ColorDialog()
Dim c As New Color()
If cd.ShowDialog() = DialogResult.OK Then
 Debug.WriteLine(cd.Color.ToString)
 Debug.WriteLine(cd.Color.Name)
Else
 Debug.WriteLine("No color chosen")
End If

Note the use of the DialogResult enumeration to check user action on the dialog box. Here is the
precise output if red is selected:

Color [Alpha=255, Red=255, Green=0, Blue=0]
ffff0000

Command Function

Class

Microsoft.VisualBasic.Interaction

Syntax
Command()

Return Value

A String containing the command-line arguments

Description

Returns the arguments used when launching VB or an application created with VB.

 206

Rules at a Glance

• For applications created with VB and compiled into an EXE, Command returns a string
containing everything entered after the executable filename.

• If the executable has been launched with no command-line arguments, Command returns a
null string.

Example

The following example demonstrates how to parse command-line arguments to set up a series of
options in your executable. This example (which is bereft of all error handling) looks for a hyphen or a
forward slash in the command-line arguments and assumes that the character following it is a
command-line switch. Given the command-line arguments:

-d:50 -f -g -k

the program displays the following in the Immediate window:

Got option d
Option d Parameter = 50
Got option f
Got option g
Got option k

The source code is as follows:

Private Sub ParseCommandLine()

 Dim i As Integer
 Dim s, sChar, sParam As String
 Dim sPattern As String = "[-/]"

 For i = 1 To Len(Command)
 sChar = mid(Command, i, 1)
 If sChar = "-" or sChar = "/" Then
 s = Mid(Command, i + 1, 1)
 Select Case s
 Case "d"
 Console.WriteLine("Got option d")
 sParam = Mid(Command, i + 3, 2)
 Console.WriteLine("Option d Parameter = " & _
 sParam)
 Case "f"
 Console.WriteLine("Got option f")
 Case "g"
 Console.WriteLine("Got option g")
 Case "k"
 Console.WriteLine("Got option k")
 Case "l"
 Console.WriteLine("Got option l")
 End Select
 End If
 Next I

End Sub

Programming Tips and Gotchas

 207

• During the development phase, you can pass arguments to your program using the Command
Line Arguments textbox, which can be found on the Property Pages dialog box for the project
(right-click the project name in the Solution Explorer window). In particular, the textbox is
found under Start Options in the Debugging subnode of the Configuration Properties node.

• To handle command-line arguments, you must write a routine similar to the one shown earlier
to parse the string returned by Command, since the function only returns a single string
containing all input after the name of the executable file.

• Command-line arguments are ideal for specifying various options on unattended applications.

Const Statement

Syntax
[accessmodifier] Const constantname [As type] = constantvalue
accessmodifier

Use: Optional

Type: Keyword

One of the keywords Public, Private, Protected, Friend, or Protected Friend. For
more information, see Section 3.7 in Chapter 3.

constantname

Use: Required

Type: String Literal

The name of the constant.

type

Use: Optional

Type: Keyword

The data type; it can be Byte, Boolean, Char, Short, Integer, Long, Single, Double,
Decimal, Date, or String, as well as any of the data types defined in the Base Class
Library.

constantvalue

Use: Required

Data Type: Numeric or String

A literal, constant, or any combination of literals and constants that includes arithmetic or
logical operators, except Is.

Description

 208

Associates a constant value with a name. This feature is provided to make code more readable. The
name is referred to as a symbolic constant.

Rules at a Glance

• The rules for constantname are the same for those of any variable: the name can be up to
255 characters in length and can contain any alphanumeric character, although it must start
with an alphabetic character. In addition, the name can include almost any other character
except a period or any of the data type definition characters ($, &, %, !).

• The constantvalue expression cannot include any of the built-in functions or objects,
although it can be a combination of absolute values and operators. The expression can also
include previously defined constants. For example:

• Private Const CONST_ONE = 1
• Private Const CONST_TWO = 2

Private Const CONST_THREE = CONST_ONE + CONST_TWO

• Scoping rules are the same as for variables. For more on scope, see Chapter 3.
• If Option Strict is on, the data type of the constant must be defined by using the As type

clause.

Example
Private Const MY_CONSTANT = 3.1417

Programming Tips and Gotchas

• Your code may be more readable if you take advantage of the fact that VB allows lengthy
constant (and variable) names. This allows you to choose these names in a more meaningful
way.

• If you are building a large application with many different modules, you may find your code
easier to maintain if you create a single separate code module to hold your Public constants.

• If two or more constants are related, you should define them as members of an enumeration
using the Enum statement.

See Also

Enum Statement

Cos Function

Class

System.Math

Syntax
Math.Cos(d)
d

Use: Required

Data Type: Double or numeric expression

 209

An angle in radians

Return Value

A Double data type denoting the cosine of an angle

Description

Takes an angle specified in radians and returns a ratio representing the length of the side adjacent to
the angle divided by the length of the hypotenuse

Rules at a Glance

• The cosine returned by the function is between -1 and 1.
• This is a Shared member, so it can be used without creating any objects.

Example
Dim dblCosine as Double
dblCosine = Math.Cos(dblRadians)

Programming Tips and Gotchas

• To convert degrees to radians, multiply degrees by pi/180.
• To convert radians to degrees, multiply radians by 180/pi.

VB .NET/VB 6 Differences

In VB 6, Cos was an intrinsic VB function. In the .NET platform, it is a member of the Math class in the
System namespace, and so it is not part of the VB .NET language.

See Also

Cosh Function, Sin Function, Tan Function

Cosh Function

Class

System.Math

Syntax
Math.Cosh(value)
value

Use: Required

Data Type: Double or numeric expression

 210

An angle in radians

Return Value

A Double denoting the hyperbolic cosine of the angle.

Description

Returns the hyperbolic cosine of an angle.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Cosh function is new to the .NET platform; it did not exist in VB 6.

See Also

Cos Function, Sinh Function, Tanh Function

CreateObject Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax
objectvariable = CreateObject(progid [, servername])
objectvariable

Use: Required

Data Type: Object

A variable to hold the reference to the instantiated object

progid

Use: Required

Data Type: String

 211

The programmatic identifier (or ProgID) of the class of the object to create

servername

Use: Optional

Data Type: String

The name of the server on which the object resides

Return Value

A reference to a COM or ActiveX object.

Description

Creates an instance of an OLE Automation (ActiveX) object.

Prior to calling the methods, functions, or properties of a COM or ActiveX object, you are required to
create an instance of that object. Once an object is created, reference it in code using the object
variable you defined.

Rules at a Glance

• If your project does not include a reference to the object, you must declare the object variable
type as Object; this allows the variable to reference any type of object.

• If an instance of the ActiveX object is already running, CreateObject may start a new instance
when it creates an object of the required type.

• CreateObject can only be used to create instances of COM (or ActiveX) objects; it cannot be
used to instantiate .NET components.

Example

The following routine defines a generic Object variable, as well as an Excel application object. It then
uses the Timer function to compare the performance of the code fragment that uses late binding to
instantiate the Excel application object with the one that uses early binding. (For a discussion of late
and early binding, see the second item under Programming Tips and Gotchas.)

Private Sub TestBinding()

Dim dblTime As Double
Dim strMsg As String

' Calculate time for late binding
dblTime = Timer()
Dim objExcelLate As Object
objExcelLate = CreateObject("excel.application")
objExcelLate = Nothing
strMsg &= "Late Bound: " & Timer() - dblTime
strMsg &= vbCrLf

' Calculate time for early binding
dblTime = Timer()
Dim objExcelEarly As Excel.Application
objExcelEarly = Excel.Application
objExcelEarly = Nothing

 212

strMsg &= "Early Bound: " & Timer() - dblTime

MsgBox (strMsg, vbOKOnly, "Late and Early Binding")

End Sub

Programming Tips and Gotchas

• The ProgID is defined in the system registry and usually takes the form library.class or
application.class.

• The Object data type is the most generic of Visual Basic objects. When an object variable has
been defined as type Object, CreateObject performs what is termed late binding. This means
that, because the precise object type is unknown at compile time, the object cannot be bound
into your program when it is compiled. Instead, this binding occurs only at runtime, when the
program is run on the target system and the CreateObject function is executed. This need to
determine the object type by referencing the relevant interfaces at runtime is time-consuming
and results in poor performance. You can vastly improve this performance by utilizing early
binding. Early binding necessitates adding a reference to the required object to your project.

• The servername parameter permits the specification of the name of the server on which the
ActiveX object is registered. This means that you could even specify different servers
depending upon prevailing circumstances, as this short example demonstrates:

• Dim sMainServer As String
• Dim sBackUpServer As String
•
• sMainServer = "NTPROD1"
• sBackUpServer = "NTPROD2"
•
• If IsOnline(sMainServer) Then
• CreateObject("Sales.Customer",sMainServer)
• Else
• CreateObject("Sales.Customer",sBackUpServer)

End If

• To use a current instance of an already running ActiveX object, use the GetObject function.
• If an object is registered as a single-instance object—i.e., an out-of-process ActiveX EXE—

only one instance of the object can be created. Regardless of the number of times
CreateObject is executed, you will obtain a reference to the same instance of the object.

• It is considered good programming practice (and often a necessary one) to tidy up after you
have finished using an object by setting objectvariable to Nothing. This has the effect of
freeing the memory taken up by the instance of the object, and, if there are no other "live"
references to the object, shutting it down. For example:

objectvariable = Nothing

See Also

GetObject Function

CShort Function

Named Arguments

 213

No

Syntax
CShort(expression)
expression

Use: Required

Data Type: Numeric or String

The range of expression is -32,768 to 32,767; fractions are rounded.

Return Value

expression cast as a Short

Description

Converts expression to a Short value; any fractional portion of expression is rounded.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

• If the value of expression is outside the range of the Short data type, an overflow error is
generated.

• When the fractional part of expression is exactly .5, CShort always rounds it to the nearest
even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example
Dim iMyNumber as Short
If IsNumeric(sMyNumber) then
 iMyNumber = CShort(sMyNumber)
End If

Programming Tips and Gotchas

• When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CShort—instead of Val, because the data type conversion
functions take into account the system's regional settings. In particular, CShort recognizes the
thousands separator if it's present in expression, whereas Val does not. For example, if
expression is 1,234, CShort successfully converts it to the integer value 1234, while Val
converts it to 1.

• Use IsNumeric to test whether expression evaluates to a number before performing the
conversion.

• CShort differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same type value as was passed in.

• Like most of the conversion functions, CShort is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

 214

The CShort function is new to VB .NET. However, it corresponds directly to the VB 6 CInt function,
since both return 16-bit integers.

See Also

CInt Function, CLng Function

CSng Function

Named Arguments

No

Syntax
CSng(expression)
expression

Use: Required

Data Type: Numeric or String

The range of expression is -3.402823E38 to -1.401298E-45 for negative values, and
1.401298E-45 to 3.402823E38 for positive values.

Return Value

expression cast as a Single data type

Description

Returns a single-precision number

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

• If the value of expression is outside the range of the Double data type, an overflow error is
generated.

Example
Dim sngMyNumber As Single
If IsNumeric(sMyNumber) Then
 sngMyNumber = CSng(sMyNumber)
End If

Programming Tips and Gotchas

• You can use IsNumeric to test an expression before passing it to CSng.

 215

• When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CSng—instead of Val, because the data type conversion
functions take into account the computer's regional settings. The thousands separator is the
most important of these regional settings. For example, if the value of expression is the
string 1,234.987, CSng converts it to 1234.987, while Val incorrectly converts it to 1.

• Like most of the conversion functions, CSng is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

CDbl Function

CStr Function

Named Arguments

No

Syntax
CStr(expression)
expression

Use: Required

Data Type: Any

Any numeric, date, string, or Boolean expression

Return Value

expression converted to a string.

Description

Returns a string representation of expression.

Rules at a Glance

If expression is Boolean, the function returns one of the strings "True" or "False". For an
expression that can be interpreted as a date, the return value is a string representation of that date, in
the short date format of the host computer. For a numeric expression, the return is a string
representing the number.

Example
Dim sMyString as String
sMyString = CStr(100)

Programming Tips and Gotchas

 216

• The string representation of Boolean values is either "True" or "False", as opposed to their
underlying values of 0 and -1.

• Uninitialized numeric data types passed to CStr return "0."
• An uninitialized date variable passed to CStr returns "12:00:00AM."
• Like most of the conversion functions, CStr is not actually a function in the

Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Str Function

CType Function

Named Arguments

No

Syntax
CType(expression, typename)
expression

Use: Required

Data Type: Any

The data item to be converted

typename

Use: Required

Type: Keyword

The data type, object type, structure, or interface to which expression is to be converted

Return Value

expression cast as a typename interface, object, structure, or data type.

Description

Converts any expression that can be interpreted as an object to Object.

Rules at a Glance

• expression can be any data, object, structure, or interface type.

 217

• typename can be any data type (such as Boolean, Byte, Decimal, Long, Short, String,
etc.), structure type, object type, or interface that can be used with the As clause in a Dim
statement.

• If the function fails, or if the converted value of expression is outside the range allowed by
typename, an InvalidCastException exception occurs.

Example
Option Strict On
Imports Microsoft.VisualBasic
Imports System

Interface IEmployee
 Property Name() As String
 Property Salary() As Decimal
End Interface

Public Class CSalaried
Implements IEmployee

Dim sName As String
Dim decSalary AS DEcimal

Public Property Name() As String Implements IEmployee.Name
 Get
 Name = sName
 End Get
 Set
 sName = Value
 End Set
End Property

Public Property Salary() As Decimal Implements IEmployee.Salary
 Get
 Salary = decSalary
 End Get
 Set
 decSalary = Value
 End Set
End Property

End Class

Module modMain

Public Sub Main()

Dim oSal As New CSalaried
Dim oSal2 As CSalaried
Dim oEmp As IEmployee

oSal.Name = "John Doe"
oSal.Salary = 30000
console.writeline(oSal.Name)

oEmp = CType(oSal, IEmployee)
console.writeline(oEmp.Name)

oSal2 = CType(oEmp, CSalaried)
console.writeline(oSal2.name)

 218

End Sub

End Module

Programming Tips and Gotchas

• CType can perform the same conversions as the individual conversion functions and raises a
runtime error if it is asked to perform a conversion that an individual conversion function
cannot perform. For example, in the function call:

bVal = CType(Var1, Boolean)

Var1 can be any numeric value, any numeric string, or a string whose value is either "True"
or "False".

• Like most of the conversion functions, CType is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

• In part, CType is a "convenience function" that provides the functionality of the entire set of
conversion functions in a single function. Its real significance, however, comes when you want
to convert a derived object to the type of its base class, or when you want to convert an object
to the type of its virtual base class (that is, its interface).

• Upcasting a derived object to its parent object type can be done implicitly. However,
downcasting back from the base class type to the derived object type cannot be done implicitly
if Option Strict is On. Instead, CType can be used to perform this conversion. This is
illustrated in the example.

VB .NET/VB 6 Differences

The CType function is new to VB .NET.

See Also

CBool Function, CByte Function, CChar Function, CDate Function, CDbl Function, CDec
Function, CInt Function, CLng Function, CObj Function, CShort Function, CSng Function,
CStr Function

CurDir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
CurDir[(drive)]
drive

Use: Optional

Data Type: String or Char

 219

The name of the drive

Return Value

A String containing the current path.

Description

Returns the current directory of a particular drive or the default drive.

Rules at a Glance

• If no drive is specified or if drive is a zero-length string (""), CurDir returns the path for the
current drive.

• drive can be the single-letter drive name with or without a colon (i.e., both "C" and "C:" are
valid values for drive).

• If drive is invalid, the function will generate runtime error 68, "Device unavailable."
• Because CurDir can only accept a single-character string, you cannot use network drive

names, share names, or UNC drive names.

Example
Sub TestCurDir()
 MsgBox CurDir("C")
End Sub

See Also

ChDir Procedure, ChDrive Procedure, MkDir Procedure, RmDir Procedure

DateAdd Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateAdd(interval, number, datevalue)
interval

Use: Required

Data Type: String or DateInterval enum

A String expression (see the first item in Rules at a Glance) or a member of the
DateInterval enumeration (see the second item in Rules at a Glance) that specifies the
interval of time to add.

number

 220

Use: Required

Data Type: Double

An expression denoting the number of time intervals you want to add (it can be positive or
negative

datevalue

Use: Required

Data Type: Date, or an expression capable of conversion to a date

Date representing the starting date to which the interval is to be added

Return Value

A past or future Date that reflects the result of the addition

Description

Returns a Date representing the result of adding (or subtracting, if number is negative) a given
number of time periods to or from a given date. For instance, you can calculate the date 178 months
before today's date, or the date and time 12,789 minutes from now.

Rules at a Glance

• interval can be one of the following literal strings:

String Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

• interval can also be a member of the DateInterval enum:
• Enum DateInterval
• Day
• DayOfYear
• Hour
• Minute
• Month
• Quarter
• Second
• Week
• Weekday

 221

• WeekOfYear
End Enum

• If number is positive, the result will be in the future; if number is negative, the result will be in
the past. (The meaning of "future" and "past" here is relative to datevalue).

• The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid
date. For example, you can add 10 minutes to 31 December 1999 23:55, and DateAdd
automatically recalculates all elements of the date to return a valid date, in this case 1 January
2000 00:05. This includes leap years: the calendar algorithm takes the presence of 29

February into account for leap years.

Example
DateAdd(DateInterval.Day, 120, #3/3/2001#) ' Returns 7/1/2001

Programming Tips and Gotchas

• You can check that a date is valid using the IsDate function prior to passing it as a parameter
to the function.

• To add a number of days to datevalue, use either the day of the year ("y" or
DateInterval.DayOfYear), the day ("d" or DateInterval.Day), or the weekday ("w" or
DateInterval.Weekday).

• DateAdd generates an error if the result does not lie in the range of dates of the Date data
type.

• If number contains a fractional value, it is rounded to the nearest whole number before being
used in the calculation.

• You can also use the members of the DateTime structure of the BCL to manipulate dates
and times.

VB .NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval
argument.

See Also

DateDiff Function

DateDiff Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateDiff(interval, date1, date2[, dayofweek[, weekofyear]])
interval

Use: Required

Data Type: String or DateInterval enum

 222

A String expression (see the first item in Rules at a Glance) or a member of the
DateInterval enumeration (see the second item in Rules at a Glance) that specifies the
units of time used to express the difference between date1 and date2

date1, date2

Use: Required

Data Type: Date or a literal date

The starting and ending dates, whose difference is computed as date2-date1

dayofweek

Use: Optional

Data Type: FirstDayOfWeek enum

A member of the FirstDayOfWeek enum

weekofyear

Use: Optional

Data Type: FirstWeekOfYear enum

A member of the FirstWeekOfYear enum

Return Value

A Long specifying the number of time intervals between the two dates

Description

Calculates the number of time intervals between two dates. For example, you can use the function to
determine how many days there are between 1 January 1980 and 31 May 1998.

Rules at a Glance

• interval can be one of the following literal strings:

String Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute

 223

s Second

• interval can also be a member of the DateInterval enum:
• Enum DateInterval
• Day
• DayOfYear
• Hour
• Minute
• Month
• Quarter
• Second
• Week
• Weekday
• WeekOfYear

End Enum

• To calculate the number of days between date1 and date2, you can use either of the
DateInterval constants, DayOfYear or Day, or the string literals "y" or "d".

• When interval is Weekday or "w", DateDiff returns the number of weeks between the two
dates. If date1 falls on a Monday, DateDiff counts the number of Mondays until date2. It
counts date2, but not date1. If interval is Week or "ww", however, DateDiff returns the
number of calendar weeks between the two dates. It counts the number of Sundays between
date1 and date2. DateDiff counts date2 if it falls on a Sunday, but it doesn't count date1,
even if it does fall on a Sunday.

• The DayOfWeek argument affects calculations that use the Week or "w" and Weekday or
"ww" interval settings only.

Example
DateDiff(DateInterval.Day, #1/1/1945#, #3/3/2001#, _
 FirstDayOfWeek.System, FirstWeekOfYear.System)

Programming Tips and Gotchas

• When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function parameter.

• If date1 or date2 is enclosed in double quotation marks (" ") and you omit the year, the
current year is inserted in your code each time the date1 or date2 expression is evaluated.
This makes it possible to write code that can be used in different years.

• When comparing December 31 to January 1 of the immediately succeeding year, DateDiff
with interval set equal to Year, or "yyyy" returns 1 even though only a day has elapsed.

• DateDiff considers the four quarters of the year to be January 1-March 31, April 1-June 30,
July 1-September 30, and October 1-December 31. Consequently, when determining the
number of quarters between March 31 and April 1 of the same year, for example, DateDiff
returns 1, even though the latter date is only one day after the former.

• If interval is Month or "m", DateDiff simply counts the difference in the months in which
the respective dates fall. For example, when determining the number of months between
January 31 and February 1 of the same year, DateDiff returns 1, even though the latter date is
only one day after the former.

• In calculating the number of hours, minutes, or seconds between two dates, if an explicit time
is not specified, DateDiff provides a default value of midnight (00:00:00).

VB .NET/VB 6 Differences

 224

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval
argument.

See Also

DateAdd Function

DatePart Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DatePart(interval, datevalue[,firstdayofweekvalue[, _
 firstweekofyearvalue]])
interval

Use: Required

Data Type: String or a member of the DateInterval enum

A String literal (see the second item in Rules at a Glance) or a constant of the
DateInterval enum (see the third item in Rules at a Glance) that defines the part of the
date/time to extract from datevalue

datevalue

Use: Required

Data Type: Date, literal date, or an expression capable of conversion to a date

The Date value to evaluate

firstdayofweekvalue

Use: Optional

Data Type: FirstDayOfWeek enum

A member of the FirstDayOfWeek enum

firstweekofyearvalue

Use: Optional

Data Type: FirstWeekOfYear enum

A member of the FirstWeekOfYear enum

 225

Return Value

An Integer containing the specified part

Description

Extracts an individual component of the date or time (like the month or the second) from a date/time
value

Rules at a Glance

• The DatePart function returns an Integer containing the specified portion of the given date.
DatePart is a single function encapsulating the individual Year, Month, Day, Hour, Minute, and
Second functions.

• interval can be one of the following literal strings:

String Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

• interval can also be a member of the DateInterval enum:
• Enum DateInterval
• Day
• DayOfYear
• Hour
• Minute
• Month
• Quarter
• Second
• Week
• Weekday
• WeekOfYear

End Enum

• The firstdayofweekvalue argument can be any of the following members of the
FirstDayOfWeek enumeration:

• Enum FirstDayOfWeek
• System 'uses first day of week setting on local system
• Sunday
• Monday
• Tuesday
• Wednesday
• Thursday

 226

• Friday
• Saturday

End Enum

• The firstdayofweekvalue argument affects only calculations that use either the Week (or
"w") or Weekday (or "ww") interval values.

• The firstweekofyearvalue argument can be any of the following members of the
FirstWeekOfYear enumeration:

FirstWeekOfYear
constant Value Description

System 0 Uses the local system setting
Jan1 1 Starts with the week in which January 1 occurs (the default value)

FirstFourDays 2 Starts with the first week that has at least four days in the new
year

FirstFullWeek 3 Starts with the first full week of the year

Example
MsgBox("Current hour: " & DatePart(DateInterval.Hour, Now))

Programming Tips and Gotchas

• When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function parameter.

• If you attempt to extract the hours, minutes, or seconds, but datevalue does not contain the
necessary time element, the function assumes a time of midnight (0:00:00).

• If you specify datevalue within quotation marks (" ") and omit the year, the year is assumed
to be the current year taken from the computer's date. For example:

Console.WriteLine(DatePart(DateInterval.Year, cDate("01/03")))

VB .NET/VB 6 Differences

• VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the
interval argument.

• VB 6 supports a number of constants beginning with vb... as values for the
firstdayofweekvalue and firstweekofyearvalue arguments. While these are still
supported in VB .NET, VB .NET has also added the FirstDayOfWeek and
FirstWeekOfYear enumerations.

See Also

DateSerial Function, DateString Property, DateValue Function

DateSerial Function

Class

Microsoft.VisualBasic.DateAndTime

 227

Syntax
DateSerial(year, month, day)
year

Use: Required

Data Type: Integer

Number between 100 and 9999, inclusive, or a numeric expression

month

Use: Required

Data Type: Integer

Any numeric expression to express the month between 1 and 12

day

Use: Required

Data Type: Integer

Any numeric expression to express the day between 1 and 31

Return Value

A Date representing the date specified by the arguments

Description

Returns a Date whose value is specified by the three date components (year, month, and day).

For the function to succeed, all three components must be present, and all must be numeric values.
The value returned by the function takes the short date format defined by the Regional Settings applet
in the Control Panel of the client machine.

Rules at a Glance

• If the value of a particular element exceeds its normal limits, DateSerial adjusts the date
accordingly. For example, if you tried DateSerial(96,2,31)—February 31, 1996—
DateSerial returns March 2, 1996.

• You can specify expressions or formulas that evaluate to individual date components as
parameters to DateSerial. For example, DateSerial(98,10+9,23) returns 23 March 1999.
This makes it easier to use DateSerial to form dates whose individual elements are unknown
at design time or that are created on the fly as a result of user input.

Example
Dim iYear As Integer = 1987
Dim iMonth As Integer = 3 + 11
Dim iday As Integer = 16

MsgBox(DateSerial(iYear, iMonth, iday))

 228

Programming Tips and Gotchas

• If any of the parameters exceed the range of the Integer data type (-32,768 to 32,767), an
error (runtime error 6, "Overflow") is generated.

• DateSerial handles two-digit years in the same way as other Visual Basic date functions. A
year argument between 0 and 29 is taken to be in the 21st century (2000 to 2029); year
arguments between 30 and 99 are taken to be in the 20th century (1930 to 1999). Of course,
the safest way to specify a year is to use the full four digits.

See Also

DatePart Function, DateString Property, DateValue Function

DateString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateString()

Return Value

A String representing the current system date

Description

Returns or sets a string representing the current system date in the format "mm-dd-yyyy"

Rules at a Glance

The allowed formats for setting the date are "m-d-yyyy," "m-d-y," "m/d/yyyy," and "m/d/y."

Programming Tips and Gotchas

• To get or set the current system time as a String, use the TimeString property.
• To access the current system date as a Date, use the Today property.

VB .NET/VB 6 Differences

The DateString property is new to VB .NET. It is a replacement for the VB 6 Date statement, which
sets the system date, and the Date and Date$ functions, which retrieve the system date.

See Also

Now Property, TimeString Property, Today Property

 229

DateValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateValue(stringdate)
stringdate

Use: Required

Data Type: String

A string containing any of the date formats recognized by IsDate

Return Value

A Date that represents the date specified by the stringdate argument

Description

Returns a Date containing the date represented by stringdate.

The date value is formatted according to the short date setting defined by the Regional Settings applet
in the Control Panel. DateValue can successfully recognize a stringdate in any of the date formats
recognized by IsDate. DateValue does not return time values in a date/time string; they are simply
dropped. However, if stringdate includes a valid date value but an invalid time value, a runtime
error results.

Rules at a Glance

• The order of the day, month, and year within stringdate must be the same as the sequence
defined by the computer's regional settings.

• Only those date separators recognized by IsDate can be used.
• If you don't specify a year in your date expression, DateValue uses the current year from the

computer's system date.

Example
Dim sDateExpression As String

sDateExpression = 10 & "/" & "March" & "/" & 1998

If IsDate(sDateExpression) Then
 Console.WriteLine(DateValue(sDateExpression))
Else
 Console.WriteLine("invalid date")
End If

Programming Tips and Gotchas

 230

• When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function argument.

• If stringdate includes time information as well as date information, the time information is
ignored; however, if only time information is passed to DateValue, an error is generated.

• DateValue handles two-digit years in the following manner: Year arguments between 0 and
29 are taken to be in the 21st century (2000 to 2029), while year arguments between 30 and
99 are taken to be in the 20th century (1930 to 1999). Of course, the safest way to specify a
year is to use the full four digits.

• On Windows NT/2000 systems, the date formats are held as string values in the following
registry keys:

Date Separator

HKEY_CURRENT_USER\Control Panel\International, sDate value entry

Long Date

HKEY_CURRENT_USER\Control Panel\International, sLongDate value entry

Short Date

HKEY_CURRENT_USER\Control Panel\International, sShortDate value entry

• The more common approach to date conversion is to use the CDate function. Microsoft also
recommends using the C... conversion functions due to their enhanced capabilities and their
locale awareness.

See Also

DatePart Function, DateSerial Function, DateString Property

Day Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Day(datevalue)
datevalue

Use: Required

Data Type: Date or literal date

Return Value

An Integer from 1 to 31, representing the day of the month

Description

 231

Returns an Integer ranging from 1 to 31, representing the day of the month of datevalue

Rules at a Glance

The range of datevalue is 1/1/1 to 12/31/9999.

Programming Tips and Gotchas

• When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function parameter.

• With Option Strict On, you must first convert datevalue to a Date data type before
passing it to the Day function. You can use the CDate function for thi s purpose.

• If the day portion of datevalue is outside of its valid range, the function regenerates runtime
error 13, "Type mismatch." This is also true if the day and month portion of datevalue is
2/29 for a non-leap year.

• To return the day of the week, use the WeekDay function.

See Also

DatePart Function, WeekdayName Function

DDB Function

Class

Microsoft.VisualBasic.Financial

Syntax
DDB(cost, salvage, life, period[, factor])
cost

Use: Required

Data Type: Double

The initial cost of the asset.

salvage

Use: Required

Data Type: Double

The value of the asset at the end of life.

life

Use: Required

 232

Data Type: Double

Length of life of the asset.

period

Use: Required

Data Type: Double

Period for which the depreciation is to be calculated.

factor

Use: Optional

Data Type: Variant

The rate at which the asset balance declines. If omitted, 2 (double-declining method) is
assumed. However, the documentation doesn't mention what other values are supported or
what they mean.

Return Value

Double representing the depreciation of an asset

Description

Returns a Double representing the depreciation of an asset for a specific time period. This is done
using the double-declining balance method or another method that you specify using the factor
argument.

The double-declining balance calculates depreciation at a differential rate, which varies inversely with
the age of the asset. Depreciation is highest at the beginning of an asset's life and declines over time.

Rules at a Glance

• life and period must be specified in the same time units. In other words, both must be
expressed in units of months, or both must be years.

• All arguments must be positive numbers.

Example
Dim dblInitialCost As Double = 2000
Dim dblSalvageValue As Double = 50
Dim dblUsefulLife As Double = 12
Dim dblTotDepreciation As Double = 0
Dim dblPeriod, dblThisPeriodDepr As Double

For dblPeriod = 1 To 12
 dblThisPeriodDepr = DDB(dblInitialCost, _
 dblSalvageValue, dblUsefulLife, dblPeriod)
 dblTotDepreciation = dblTotDepreciation + _
 dblThisPeriodDepr
 Console.WriteLine("Month " & dblPeriod & ": " & _
 dblThisPeriodDepr)

 233

Next dblPeriod

Console.WriteLine("TOTAL: " & dblTotDepreciation)

Programming Tips and Gotchas

• The double-declining balance depreciation method calculates depreciation at a higher rate in
the initial period and a decreasing rate in subsequent periods.

• The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / period = ((cost - salvage) * factor) / life

Debug Class

Namespace

System.Diagnostics

Createable

No

Description

The Debug object is used to send messages to the Output window (formerly called the Immediate
window). The Debug object can also send output to other targets, such as text files, referred to as
listeners. See the Debug.Listeners Property entry. The Debug class also allows you to check
program logic with assertions.

Because the Debug class' members are shared, you do not need to instantiate the Debug object
before accessing its members. The following code fragment, for instance, illustrates a call to the
Debug object's WriteLine method:

Debug.WriteLine(intCount & " iteration through the loop")

Debug class members marked with an plus sign (+) are discussed in detail in their own entries.

Public Shared Properties
AutoFlush +
IndentLevel +
IndentSize +
Listeners +

Public Shared Methods
Assert +
Close +
Fail
Flush +
Indent +
Unindent +
Write +
WriteIf +

 234

WriteLine +
WriteLineIf +

VB .NET/VB 6 Differences

The VB 6 Debug object has only two methods, Assert and Print. The VB .NET Assert method is similar
to the VB 6 method, except that the latter displays a message if an expression is False, while the
former suspends program execution. In VB .NET, the VB 6 Print method is gone, replaced by the
Write, WriteIf, WriteLine, and WriteLineIf methods.

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

Debug.Assert Method

Class

System.Diagnostics.Debug

Syntax
Debug.Assert(booleanexpression[[, string1], string2])
booleanexpression

Use: Required

Data Type: Boolean

Expression that evaluates to a Boolean value.

string1

Use: Required

Data Type: String

String to output if booleanexpression is False.

string2

Use: Required

Data Type: String

Detailed string to output. If booleanexpression is False, string2 is output to Output
window.

Return Value

None

 235

Description

Outputs messages to the Output window if the condition is False

Rules at a Glance

booleanexpression must evaluate to a Boolean value.

Programming Tips and Gotchas

• Assert is typically used when debugging to test an expression that should evaluate to True.
• Debug.Assert executes only when an application is run in the design-time environment; the

statement has no effect in a compiled application. This means that Debug.Assert will never
produce a runtime error if the call to it is inappropriate, nor will it suspend program execution
outside of the VB IDE. Because of this, you do not have to remove Debug.Assert statements
from finished code or separate them with conditional #If...Then statements.

Debug.AutoFlush Property

Class

System.Diagnostics.Debug

Syntax
Debug.AutoFlush

Return Value

Boolean

Description

Sets or returns a Boolean value indicating whether each Write should be automatically followed by a
Flush operation. By default, its value is False.

See Also

Debug.Flush Method

Debug.Close Method

Class

System.Diagnostics.Debug

 236

Syntax
Debug.Close()

Return Value

None

Description

Flushes the output buffer and closes the listeners (except for the default Output window)

Debug.Flush Method

Class

System.Diagnostics.Debug

Syntax
Debug.Flush()

Return Value

None

Description

Flushes the output buffer, which causes all pending data to be written to the listeners

Debug.Indent Method

Class

System.Diagnostics.Debug

Syntax
Debug.Indent()

Description

Increases the current IndentLevel by 1. The property is useful for improving the readability of output
sent to the Output window.

See Also

 237

Debug.IndentLevel Property, Debug.IndentSize Property, Debug.Unindent Method

Debug.IndentLevel Property

Class

System.Diagnostics.Debug

Syntax
Debug.IndentLevel()

Return Value

An Integer specifying the indent level. The default is 0.

Description

Sets or retrieves the current indent level for the Debug object. The property is useful for improving the
readability of output sent to the Output window.

See Also

Debug.IndentSize Property, Debug.Unindent Method

Debug.IndentSize Property

Class

System.Diagnostics.Debug

Syntax
Debug.IndentSize

Return Value

An Integer specifying the number of spaces per indent level. The default is 4.

Description

Sets or retrieves the current indent-size setting, which is the number of spaces per indent level. The
property is useful for improving the readability of output sent to the Output window.

See Also

 238

Debug.IndentLevel Property, Debug.Unindent Method

Debug.Listeners Property

Class

System.Diagnostics.Debug

Syntax
Debug.Listeners

Description

Retrieves the TraceListenerCollection collection of all TraceListener objects that monitor the debug
output.

Example

The following code adds a text file to the listeners collection. As a result, all Debug.Write... methods
will not only send the output to the Output window (the default listener) but also to the text file:

' Define a new TextWriterTraceListener
Dim trace As New TextWriterTraceListener()

' Define a new FileStream object
Dim fs As FileStream = New FileStream("c:\log.txt", FileMode.Append, _
 FileAccess.Write)

' Set the Writer property to a new StreamWriter for this FileStream
trace.Writer = New StreamWriter(fs)

' Add listener
Debug.Listeners.Add(trace)

' Output
Debug.WriteLine("xxxxx")
Debug.WriteLine("yyyyy")

' Close up
Debug.Close()
fs.Close()

' Remove listener
Debug.Listeners.Remove(trace)

' This goes only to Output window
Debug.WriteLine("zzzzz")

Debug.Unindent Method

 239

Class

System.Diagnostics.Debug

Syntax
Debug.Unindent()

Description

Decreases the current IndentLevel by 1. The property is useful for improving the readability of output
sent to the Output window.

See Also

Debug.Indent Method, Debug.IndentLevel Property

Debug.Write Method

Class

System.Diagnostics.Debug

Syntax
Debug.Write(Output[, Category])
Output

Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category

Use: Optional

Data Type: String

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment

Rules at a Glance

• If Output is a string, the string is printed to the Output window.

 240

• If Output is a nonstring object, the ToString property of the Object object is invoked. This
just outputs a string version of the name of the object.

• Supplying a Category argument is useful when you want to organize the output from several
Debug.Write statements by category. Output from the method then takes the form:

Category: Output

if Output is a string, and:

Category: Output.ToString

if Output is a nonstring object.

Programming Tips and Gotchas

In Visual Basic applications, Debug.Write executes only when an application is run in the design-time
environment; the statement has no effect in a compiled application.

See Also

Debug.WriteIf Method, Debug.WriteLine Method, Debug.WriteLineIf Method

Debug.WriteIf Method

Class

System.Diagnostics.Debug

Syntax
Debug.WriteIf(condition, message[, Category])

or:

Debug.WriteIf(condition, value[, Category])
condition

Use: Required

Data Type: Boolean

Condition required for output to proceed

message

Use: Required

Data Type: String

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

 241

value

Use: Required

Data Type: Any

An object whose name is to be sent to the Output window

Category

Use: Optional

Data Type: String

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment, provided that condition is True

Rules at a Glance

This method behaves identically to Debug.Write, with the exception that nothing is output unless
condition is True.

See Also

Debug.Write Method, Debug.WriteLine Method, Debug.WriteLineIf Method

Debug.WriteLine Method

Class

System.Diagnostics.Debug

Syntax
Debug.WriteLine(Output[, Category])
Output

Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category

Use: Optional

 242

Data Type: String

A category name used to group output messages

Description

Prints text, followed by a newline command, in the Output window in the design-time environment

Rules at a Glance

This method is identical to Debug.Write except that a newline command is sent to the Output window
after any text is written.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLineIf Method

Debug.WriteLineIf Method

Class

System.Diagnostics.Debug

Syntax
Debug.Write(booleanexpression, Output[, Category])
booleanexpression

Use: Required

Data Type: Boolean

Condition required for output to be produced

Output

Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category

Use: Optional

Data Type: String

A category name used to group output messages

 243

Description

Prints text followed by a newline character in the Output window in the design-time environment,
provided that booleanexpression is True

Rules at a Glance

This method behaves identically to Debug.WriteLine, except that nothing is output unless
booleanexpression is True.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLine Method

Declare Statement

Syntax

Syntax for subroutines:

[accessmodifier] Declare [Ansi|Unicode|Auto] Sub name Lib "libname" _
 [Alias "aliasname"] [([arglist])]

Syntax for functions:

[accessmodifier] Declare [Ansi|Unicode|Auto] Function name _
 Lib "libname" [Alias "aliasname"] [([arglist])] [As type]
accessmodifier

Use: Optional

Type: Keyword

accessmodifier can be any one of the following: Public, Private, Protected, Friend,
or Protected Friend. The following table describes the effects of the various access
modifiers. Note that Direct Access refers to accessing the member without any qualification,
as in:

classvariable = 100

and Class/Object Access refers to accessing the member through qualification, either with the
class name or the name of an object of that class.

 Direct Access scope Class/Object Access scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

 244

For more information, see Section 3.7 in Chapter 3.

Ansi

Use: Optional

Type: Keyword

Converts all strings to ANSI values.

Unicode

Use: Optional

Type: Keyword

Converts all strings to Unicode values.

Auto

Use: Optional

Type: Keyword

Converts the strings according to .NET rules based on the name of the method (or the alias
name, if specified). If no modifier is specified, Auto is the default.

name

Use: Required

Type: String literal

Any valid procedure name. Note that DLL entry points are case sensitive. If the aliasname
argument is used, name represents the name by which the function or procedure is referenced
in your code, while aliasname represents the name of the routine as found in the DLL.

Lib

Use: Required

Type: Keyword

Indicates that a DLL or code resource contains the procedure being declared.

libname

Use: Required

Type: String literal

Name of the DLL or code resource that contains the declared procedure.

Alias

 245

Use: Optional

Type: Keyword

Indicates that the procedure being called has another name in the DLL. This is useful when
the external procedure name is the same as a keyword. You can also use Alias when a DLL
procedure has the same name as a public variable, constant, or any other procedure in the
same scope. Alias is also useful if any characters in the DLL procedure name aren't allowed
by VB .NET naming conventions.

aliasname

Use: Optional

Type: String literal

Name of the procedure in the DLL or code resource. If the first character is not a number sign
(#), aliasname is the name of the procedure's entry point in the DLL. If # is the first character,
all characters that follow must indicate the ordinal number of the procedure's entry point.

arglist

Use: Optional

List of variables representing arguments that are passed to the procedure when it is called.

type

Use Optional

Type: Keyword

Data type of the value returned by a Function procedure; may be Byte, Boolean, Char,
Short, Integer, Long, Single, Double, Decimal, Date, String, Object, or any user-
defined type. Arrays of any type cannot be returned, but an Object containing an array can.

Description

Used at module level to declare references to external procedures in a dynamic-link library (DLL)

Rules at a Glance

• arglist is optional and has the following syntax:

[ByVal | ByRef] varname[()] [As type]
ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, a local copy of the variable is assigned the value of
the argument. ByVal is the default method of passing arguments.

 246

ByRef

Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable are reflected in the calling
argument.

varname

Use: Required

Type: String literal

The name of the local variable containing either the reference or value of the argument.

type

Use: Optional

Type: Keyword

The data type of the argument. Can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, String, Object, or any user-defined type, object type, or data type
defined in the BCL.

• The number and type of arguments included in arglist are checked each time the
procedure is called.

• The data type you use in the As clause following arglist must match that returned by the
function.

Example

The following example retrieves the handle of a window from its title bar caption. This is done using
the FindWindow API function.

Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_
 ByVal lpClassName As String, _
 ByVal lpWindowName As String _
) As Integer

Private Sub GetWindowHandle()
 MsgBox(FindWindow(vbNullString, "Document - WordPad"))
End Sub

Programming Tips and Gotchas

• Using an Alias is useful when the name of an external procedure conflicts with a Visual
Basic keyword or with the name of a procedure within your project, or when the name of the
procedure in the code library is not allowed by Visual Basic naming conventions. In addition,
aliasname is frequently used with functions in the Win32 API that have string parameters,
where the "official" documented name of the function is used in code to call either of two "real"
functions—one an ANSI and the other a Unicode version. For example:

• Declare Function ExpandEnvironmentStrings _

 247

• Lib "kernel32" Alias "ExpandEnvironmentStringsA" _
• (ByVal lpSrc As String, ByVal lpDst As String, _

 ByVal nSize As Long) As Long

defines the documented Win32 function ExpandEnvironmentStrings to a VB application.
However, although calls to the function take the form:

lngBytes = ExpandEnvironmentStrings(strOriginal, _
 strCopy, len(strCopy))

the actual name of the function as it exists in Kernel32.dll is ExpandEnvironmentStringsA.
(Windows. API functions ending in "A" are the ANSI string versions, and those ending in "W"
(for Wide) are the Unicode string versions.)

• You can use the # symbol at the beginning of aliasname to denote that aliasname is in fact
the ordinal number of a procedure within the DLL or code library. In this case, all characters
following the # sign and composing the aliasname argument must be numeric. For example:

• Declare Function GetForegroundWindow Lib "user32" _
 Alias "#237" () As Long

• Remember that DLL entry points are case sensitive. In other words, either name or
aliasname (if it is present and does not represent a routine's ordinal position) must
correspond in case exactly to the routine as it is defined in the external DLL. Otherwise, VB
displays runtime error 453, "Specified DLL function not found." If you aren't sure how the
routine name appears in the DLL, use the DumpBin.exe utility to view its export table. For
instance, the following command displays the export table of advapi32.dll, one of the Windows
system files:

dumpbin /exports c:\windows\system32\advapi32.dll

• libname can include an optional path that identifies precisely where the external library is
located. If the path is not included along with the library name, VB by default searches the
current directory, the Windows directory, the Windows system directory, and the directories in
the path, in that order.

• If the external library is one of the major Windows system DLLs (such as Kernel32.dll or
Advapi32.dll), libname can consist of only the root filename, rather than the complete
filename and extension.

• One of the most common uses of the Declare statement is to make routines in the Win32
API accessible to your programs. For more on this topic, see Win32 API Programming with
Visual Basic by Steven Roman (O'Reilly 1999).

• In addition to the standard VB data types, you can also include BCL data types that are not
wrapped by VB in arglist. Most useful are the unsigned integers, UShort, UInt16, and
UInt32.

• In many cases, you can use routines available in the .NET Base Class Library or Framework
Class Library instead of calling the Win32 API.

VB .NET/VB 6 Differences

• In VB 6, it is possible to declare the data type of an argument as Any, which suspends
typechecking by the VB runtime engine. In VB .NET, this usage is not supported.

• In VB 6, if ByVal or ByRef is not specified, an argument is passed to the calling procedure by
reference. In VB .NET, arguments are passed by value by default.

• In VB 6, it is possible to override the method in which an argument is passed to an external
function within the call itself by specifying either ByVal or ByRef before the argument. In
VB .NET, this usage is not permitted.

 248

• The size of the integer data types in VB 6 and VB .NET are different, making it necessary to
rewrite any arglist that has a data type of Integer or Long in VB 6. The VB 6 Integer data
type is equivalent to the VB .NET Short data type. The VB 6 Long data type is equivalent to
the VB .NET Integer data type.

• VB 6 lacks a signed 8-bit integer data type and unsigned data types to correspond to the
Integer and Long types. In the .NET platform, unsigned data types are available for 16-bit
integers (UInt16), 32-bit integers (UInt32), and 64-bit integers (UInt64). A signed byte data
type (SByte) is also available. All are BCL classes not wrapped by VB .NET.

Delegate Statement

Syntax
[AccessModifier] Delegate Sub name [([arglist])])
[AccessModifier] Delegate Function name [([arglist])]) As type
AccessModifier

Use: Optional

Data Type: Keyword

Specifies scope/accessibility the same as when declaring a subroutine or function. Can be
one of Public, Private, Protected, Friend, Protected Friend, or Shadows.

name

Use: Required

Type: String literal

The name of the delegate class.

arglist

Use: Optional

The argument list; it has the same syntax as when defining a subroutine or function.

Description

Declares the parameters and return type of a delegate class. Note that the syntax is the same as that
used when declaring a subroutine or function, with the addition of the keyword Delegate.

Rules at a Glance

• Any procedure whose argument list and return type matches that of a declared delegate class
can be used to create an instance of this delegate class, as the upcoming example illustrates.

• For more information on delegates, see Section 6.1 in Chapter 6.

Example

 249

Consider the following method:

Public Class Class1
 Public Sub AMethod(ByVal s As String)
 Msgbox(s)
 End Sub
End Class

Consider the following delegate declaration:

Delegate Sub ADelegate(ByVal s As String)

The following code uses the delegate to call the AMethod of Class1:

Protected Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Click

 ' Object of type Class1
 Dim obj As New Class1()

 ' Declare a new delegate
 Dim delg As ADelegate

 ' Define the delegate, passing the address of the object's method
 delg = New ADelegate(AddressOf obj.AMethod)

 ' Call the method using the Invoke method of the delegate
 delg.Invoke("test")

End Sub

DeleteSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
DeleteSetting(appname[, section[, key]])
appname

Use: Required

Data Type: String

The name of the application. This must be a subkey of the
HKEY_CURRENT_USER\Software\VB and VBA Program Settings registry key.

section

Use: Optional

 250

Data Type: String

The name of the application key's subkey that is to be deleted. section can be a single key
or a registry path separated with backslashes.

key

Use: Optional

Data Type: String

The name of the value entry to delete.

Description

Deletes a complete application key, one of its subkeys, or a single value entry from the Windows
registry

Rules at a Glance

• section can contain a relative path (similar to that used to describe the folders on a hard
drive) to navigate from the application key to the subkey to be deleted. For example, to delete
the value entry named TestKey in the registry key HKEY_CURRENT_USER\Software\VB
and VBA Program Settings\RegTester\BranchOne\BranchTwo, you would use:

• DeleteSetting "RegTester", "BranchOne\BranchTwo", _
 "TestKey"

• You cannot use DeleteSetting to delete entries from registry keys that are not subkeys of
HKEY_CURRENT_USER\Software\VB and VBA Program Settings.

• If key is supplied, only the value entry named key and its associated value are deleted.
• If key is omitted, the subkey named section is deleted.
• If section is omitted, the entire application key named appname is deleted.

Example
Sub TestTheReg()
 SaveSetting("MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 "Testkey", "10")
 MsgBox("Now look in RegEdit")
End Sub

Sub TestDelete()

 If GetSetting("MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 "TestKey") <> "" Then

 DeleteSetting("MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 "TestKey")

 MsgBox("Look again!")
 End If
End Sub

Programming Tips and Gotchas

 251

• DeleteSetting was designed to operate on initialization files in 16-bit platforms and on the
registry in 32-bit platforms. But the terminology used to describe the statement in the official
documentation is based on initialization files, rather than on the registry. In particular, what is
described as a key is a named key in an initialization file and a value entry in the registry.

• The behavior of the DeleteSetting statement differs under Windows 95 and Windows NT
when it is used to remove a key from the registry. Under Windows 95, if the statement is used
to delete either appname or section, all subkeys belonging to the key to be deleted will also
be deleted. Under Windows NT, on the other hand, the keys appname and section are only
deleted if they don't contain subkeys.

• DeleteSetting cannot be used to delete the default value (i.e., the unnamed value entry)
belonging to any key. If you're using only the VB registry functions, though, this isn't a serious
limitation, since SaveSetting does not allow you to create a default value.

• Unless you are quite sure about what you're doing, you should only delete registry settings
that have been placed in the registry by your own code. Inadvertently deleting the wrong
entries can have disastrous consequences. However, because this statement only gives you
access to the subkeys of HKEY_CURRENT_USER\Software\VB and VBA Program
Settings, the potential damage is minimized.

• Never assume that the key you want to delete is necessarily present in the registry.
DeleteSetting deletes a user key (that is, a subkey of HKEY_CURRENT_USER); except on
Windows 95 systems that are not configured to support multiple users, the user key is formed
from a file that reflects only the present user's settings. This means that when one user runs
an application, user settings are stored in his registry key. But when a second user runs the
application for the first time, settings for that user are not likely to be present. Attempting to
delete a nonexistent key produces runtime error 5, "Invalid procedure call or argument." To
prevent the error, you should first test for the presence of the registry key, as shown in the
earlier example.

• Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

GetAllSettings Function, GetSetting Function, SaveSetting Procedure

Dim Statement

Syntax
[Overrides] [Shadows] Dim [WithEvents] varname[([subscripts])] _
 [As [New] type] [= initexpr]
Overrides

Use: Optional

Type: Keyword

In a derived class definition, indicates that a variable overrides a similar variable in a base
class

Shadows

Use: Optional

 252

Type: Keyword

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation

WithEvents

Use: Optional

Type: Keyword

In an object variable definition, indicates that the object will receive event notification

varname

Use: Required

Your chosen name for the variable

subscripts

Use: Optional

Dimensions of an array variable

New

Use: Optional

Type: Keyword

Keyword that creates an instance of an object

type

Use: Optional

The data type of varname

initexpr

Use: Optional

Any expression that provides the initial value to assign to the variable; cannot be used if an As
New clause is used

Description

Declares and allocates storage space in memory for variables. The Dim statement is used either at
the start of a procedure or the start of a module to declare a variable of a particular data type.

Rules at a Glance

• Object is the default data type created when no data type is explicitly declared.

 253

• The declaration of a nonobject variable actually creates the variable. For an object variable,
the variable is not created unless the optional New statement is used. If not, then the object
variable is set to Nothing and must be assigned a reference to an existing object at some
later point in the code.

• When multiple variables are declared on the same line, if a variable is not declared with an
explicit type declaration, then its type is that of the next variable with an explicit type
declaration. Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j have type Variant.)

• VB .NET permits the initialization of variables in the same line as their declaration (at long
last!). Thus, we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more
than one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

• Variables that are not explicitly initialized by the Dim statement have the following default
values:

Data type Initial value
All numeric types 0
Boolean False

Date 01/01/0001 12:00:00 AM
Decimal 0

Object Nothing

String Zero-length string ("")

• Local variables can have procedure-level scope or block-level scope. A variable that is
declared using the Dim keyword within a Visual Basic procedure but not within a code block
has procedure-level scope; that is, its scope consists of the procedure in which it is declared.
On the other hand, if a variable is declared inside a code block (i.e., a set of statements that is
terminated by an End..., a Loop, or a Next statement), then the variable has block-level
scope; that is, it is visible only within that block.

• A variable cannot be declared using the Dim statement with WithEvents within a method,
function, or procedure, since this creates a local variable with procedure-level scope only.

• In VB .NET, all arrays have a lower bound of 0. This is a change from earlier versions of VB,
where we could choose the lower bound of an array.

• To declare a one-dimensional array variable, use one of the following example syntaxes:
• 'Implicit constructor: No initial size & no initialization
• Dim Arrayname() As Integer
• 'Explicit constructor: No initial size & no initialization
• Dim Arrayname() As Integer = New Integer() {}
•
• 'Implicit constructor: Initial size but no initialization
• Dim Arrayname(6) As Integer
•
• 'Explicit constructor: Initial size but no initialization
• Dim Arrayname() As Integer = New Integer(6) {}

 254

•
• Implicit constructor: Initial size implied by initialization
• Dim Arrayname() As Integer = {1, 2, 3, 4, 5, 6, 7}
•
• 'Explicit constructor, Initial size and initialization

Dim Arrayname() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

• To declare a multidimensional array, use one of the following example syntaxes:
• ' Two-dimensional array of unknown size
• Dim arrayname(,) As Integer
•
• ' Two-dimensional array of unknown size
• Dim arrayname(,) As Integer = New Integer(,) {}
•
• ' Two-dimensional array of size 3 by 2
• Dim arrayname(3, 2) As Integer
•
• ' Two-dimensional array of size 3 by 2
• Dim arrayname(,) As Integer = New Integer(3, 2) {}
•
• ' Two-dimensional array of size 3 by 2, initialized
• Dim arrayname(,) As Integer = {{1, 4}, {2, 5}, {3, 6}}
•
• ' Two-dimensional array of size 3 by 2, initialized
• Dim arrayname(,) As Integer = New Integer(3, 2) {{1, 4}, _

 {2, 5}, {3, 6}}

• The WithEvents keyword cannot be used when declaring an array.
• You can set or change the number of elements of an array using the ReDim statement.
• The maximum allowed dimensions for an array are 60.

Programming Tips and Gotchas

• When you declare an object reference as WithEvents, that object's events can be handled
within your application. Object variables must be declared WithEvents at the module level to
allow you to provide an error handler.

When you declare an object variable as WithEvents in the declarations section of the
module, the name of the object variable appears in the Object drop-down list at the top left of
your code window. Select this and note that the events exposed by the object are available in
the Procedure drop-down list at the top right of the code window. You can then add code to
these event procedures in the normal way, as shown here:

Private WithEvents oEmp As Employee

Private Sub oEmp_CanDataChange(EmployeeCode As String, _
 Cancel As Boolean)
 'event handling code goes here
End Sub

Private Sub oEmp_DataChanged(EmployeeCode As String)
 'event handling code goes here
End Sub

 255

For a fuller description and discussion of the uses of WithEvents, Event, and RaiseEvent,
see the Event, RaiseEvent, and WithEvents entries.

• One word of warning when using the WithEvents keyword: if you are building a client-server
system using a WithEvents object reference, you must ensure that the client machine gives
permission for the server machine to create processes on it. Otherwise, even though the client
can create instances of the object on the server, the server will not be able to call back to the
client with event notifications. In fact, your application will not even launch before a
"Permission Denied" or similar error is generated. You can alter the permissions on the client
using the DCOM Config utility.

• The way in which you declare an Object variable with the Dim statement dictates whether your
application uses early binding or late binding. Early binding allows object references to be
resolved at compile time. Late binding resolves an object reference at runtime, which has a
negative impact on runtime efficiency. To optimize the performance, you should use early
binding whenever possible. For more information on this, see the discussion of binding in
Chapter 2.

• When you declare an array without dimensioning it, you risk an ArgumentNullException
exception if you attempt to iterate the array, as in the following code fragment:

• Dim aInts(), iCtr As Integer
•
• For iCtr = 0 To UBound(aInts)
• Console.WriteLine(aInts(iCtr)) ' Raises exception

Next

One workaround is to declare an empty array as having -1 element, as the following code
fragment illustrates:

Dim aInts(-1) As Integer
For iCtr = 0 to UBound(aInts) ' For loop never executed
 Console.WriteLine(aInts(iCtr))
Next

VB .NET/VB 6 Differences

• In VB 6, all variables declared using Dim without specifying a specific data type are created as
Variants. In VB .NET, all variables whose data type is not specified are Objects.

• When multiple variables are declared on a single line of code in VB 6, variables not explicitly
assigned a data type are cast as variants. For example, in the statement:

Dim Var1, Var2, Var3 As String

both Var1 and Var2 are variants rather than strings. In VB .NET, the type declaration applies
to all undeclared variables since the last explicit type declaration. So the previous statement in
VB .NET would cast Var1, Var2, and Var3 as strings.

• In VB 6, variables cannot be initialized at the same time they are declared. In VB .NET,
variables can be assigned an initial value when they are declared.

• In VB 6, all variables defined within a procedure using the Dim keyword have procedure-level
scope. In VB .NET, variables defined using Dim in code blocks (such as loops) have block-
level scope and are not accessible throughout the procedure. Hence, code such as the
following works under VB6 but may fail to compile under VB .NET:

• Dim iCtr As Integer
• 'Nested loop
• For iCtr = 0 To 10000
• Dim iCtr2 As Integer
• For iCtr2 = 0 To 10000

 256

• Next
• Next
•
• ' Reinitialize iCtr2
• iCtr2 = 0
•

End Sub

• VB 6 supports fixed-length strings, but they are not supported in VB .NET.
• In VB 6, if an object is instantiated using the New keyword as part of a Dim statement, testing

for the validity of the object reference with a statement such as:

If obj Is Nothing Then

always fails, since the statement itself reinstantiates the object if it is Nothing. In VB .NET,
this undesirable behavior has been changed, and setting the object to Nothing destroyes the
object.

• In VB 6, you could instantiate an object instantiated using the New keyword as part of a Dim
statement, release the object reference by setting it to nothing, then reinstantiate the object by
referencing it or its members. In VB.NET, setting the object reference to Nothing destroys
the object; subsequent attempts to reference the object generate a NullReferenceException
exception.

• In VB 6, arrays could be either fixed length or dynamic; in VB .NET, all arrays are dynamic.
• VB 6 allows you to define the lower bound of an array when it is initialized. In VB .NET, all

arrays have a lower bound of 0. For example, the VB 6 syntax:

Dim array(1 To 20) As String

is not supported in VB .NET.

• In VB .NET, an array cannot be declared using the New keyword. Practically, this means that
you cannot create an array of creatable objects, and must instead use a collection. VB 6, in
contrast, allows arrays of objects.

See Also

Private Statement, Public Statement, ReDim Statement, Static Statement, WithEvents
Keyword

Dir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
Dir[(pathname[, attributes])]
pathname

 257

Use: Optional

Data Type: String

A string expression that defines a path, which may contain a drive name, a folder name, and a
filename

attributes

Use: Optional

Data Type: Numeric or Constant of the FileAttribute enumeration

A FileAttribute enumeration constant or numeric expression specifying the file attributes
to be matched

Return Value

String

Description

Returns the name of a single file or folder matching the pattern and attribute passed to the function

Rules at a Glance

• A zero-length string ("") is returned if a matching file is not found.
• Possible values for attributes are:

FileAttribute enumeration Value Description
Normal 0 Normal (not hidden and not a system file)
ReadOnly 1 Read-only file
Hidden 2 Hidden
System 4 System file
Volume 8 Volume label; if specified, all other attributes are ignored
Directory 16 Directory or folder
Archive 32 Archive
Alias 64 Alias or link

• The attributes constants can be Ored together to create combinations of attributes to
match; e.g., FileAttribute.Hidden Or FileAttribute.Directory will match hidden
directories.

• If attributes is not specified, files matching pathname are returned regardless of
attributes.

• You can use the wildcard characters * and ? within pathname to return multiple files.
• Although pathname is optional, the first call you make to Dir must include it. pathname must

also be specified if you are specifying attributes. In addition, once Dir returns a zero-
length string, subsequent calls to Dir must specify pathname, or runtime error 5, "Invalid
procedure call or argument," results.

• A call to Dir with no arguments continues the search for a file matching the last used
pathname argument (and attribute argument, if it was supplied).

 258

Example
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click

 Dim sFileName As String
 Dim sPath As String = "c:\windows*.txt"

 sFileName = Dir(sPath)

 Do While sFileName > ""
 ListBox1.Items.Add(sFileName)
 sFileName = Dir()
 Loop

 End Sub

Programming Tips and Gotchas

• Dir can only return one filename at a time. To create a list of more than one file that matches
pathname, you must first call the function using the required parameters, then make
subsequent calls using no parameters. When there are no more files matching the initial
specification, a zero-length string is returned. Once Dir has returned a zero-length string, you
must specify a pathname in the next call, or an error is generated.

• In previous versions of Visual Basic, the Dir function was commonly employed to determine
whether a particular file existed. Although it can still be used for this purpose, the use of the
BCL System.IO namespace's File.Exists method is more straightforward. Since Exists is a
shared public member of the File class, it can be called as follows:

If File.Exists("c:\windows\network.txt")

• The Dir function returns filenames in the order in which they appear in the file-allocation table.
If you need the files in a particular order, you should first store the names in an array before
sorting. Note that an array can be easily sorted using the Array object's Sort method; the Array
class is part of the BCL's System namespace.

• The Dir function saves its state between invocations. This means that the function cannot be
called recursively. For example, if the function returns the name of the directory, you cannot
then call the Dir function to iterate the files in that directory and then return to the original
directory.

• If you are calling the Dir function to return the names of one or more files, you must provide an
explicit file specification. In other words, if you want to retrieve the names of all files in the
Windows directory, for instance, the function call:

strFile = Dir("C:\Windows", FileAttribute.Normal)

necessarily fails. Instead, the Dir function must be called with pathname defined as follows:

strFile = Dir("C:\Windows*.*", FileAttribute.Normal)

• A major limitation of Dir is that it returns only the filename; it does not provide other
information, such as the size, date, and timestamp, or attributes of a file.

• Many difficulties with the Dir function result from not fully understanding how various
attributes constants affect the file or files returned by the function. By default, Dir returns a
"normal" file (i.e., a file whose hidden or system attributes are not set). Hidden returns a
normal file or a hidden file, but not a system file and not a system file that is hidden. System
returns a normal file or a system file, but not a hidden file, including a system file that is hidden.

 259

FileAttribute.System Or FileAttribute.Hidden returns any file, regardless of
whether it is normal, hidden, system, or system and hidden.

Directory Class

Namespace

System.IO

Createable

No

Description

The Directory class represents a directory or folder. (It appears that Microsoft is retreating from the
term folder, in favor of the legacy term directory.) The Directory class has a number of methods that
allow you to retrieve information about the directory's system properties, to move and delete a
directory, and to create a new directory. (Unfortunately, however, the Directory class lacks a Copy
method.)

All of the members of the Directory class are shared methods, so they can be called without
instantiating any objects. For example, you can call the CreateDirectory method as follows:

Directory.CreateDirectory("C:\projects\project1")

This syntax may seem a bit awkward, especially to those familiar with earlier version of VB. Rather
than the Directory object itself representing a directory, as it does in the case of a Folder object in the
VB 6 FileSystemObject object model, the Directory class is simply a means to access a set of
directory-related functions.

Directory class members marked with a plus sign (+) are discussed in further detail in their own entries.

Public Shared Methods
CreateDirectory +
Delete +
Exists +
GetCreationTime +
GetCurrentDirectory
GetDirectories +
GetDirectoryRoot +
GetFiles +
GetFileSystemEntries +
GetLastAccessTime
GetLastWriteTime
GetLogicalDrives +
GetParent +
Move +
SetCreationTime
SetCurrentDirectory
SetLastAccessTime
SetLastWriteTime

 260

VB .NET/VB 6 Differences

The Directory object loosely corresponds to the Folder object in the FileSystemObject object
model. (The FileSystemObject object and its child objects are implemented in the Microsoft
Scripting Runtime Library in the file scrrun.dll.) There is, however, a significant difference in the
members of each class, and in some cases, methods with similar functionality have different names.

See Also

File Object

Directory.CreateDirectory Method

Class

System.IO.Directory

Syntax
Directory.CreateDirectory(path)
path

Use: Required

Data Type: String

The path of the new directory

Return Value

None

Description

Creates a new directory

Rules at a Glance

• path must represent a legal path.
• path can be an absolute or a relative path. For example:

Directory.CreateDirectory("C:\Temp")

specifies an absolute path (it begins with a drive's root directory), while:

Directory.CreateDirectory("..\Chapter2")

is a relative path that begins from the current directory. Relative paths can make use of the "."
and ".." characters, which represent the current directory and the parent of the current
directory, respectively.

 261

• The CreateDirectory method creates all directories required to create a specified path. For
example, the code:

Directory.CreateDirectory("c:\NewDirectory\NewSubDirectory")

will create the NewDirectory folder if it does not exist and then the newSubDirectory folder if it
does not exist.

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

Programming Tips and Gotchas

The CreateDirectory method does not raise an error if the directory to be created already exists.

Directory.Delete Method

Class

System.IO.Directory

Syntax
Directory.Delete(path [,recursive])
path

Use: Required

Data Type: String

The path of the folder to delete.

recursive

Use: Optional

Data Type: Boolean

Indicates whether the folder and its contents are to be deleted if the folder is not empty. Its
default value is False.

Return Value

None

Description

Removes or deletes an existing directory

Rules at a Glance

 262

• If path does not exist, the method generates a runtime error.
• If recursive is set to False (its default value), the directory must be empty to be

successfully deleted; otherwise, a runtime error will be generated.
• If recursive is set to True, the method will delete not only the final directory in path, but

also of its files and all of its subdirectories, as well as all nested subdirectories and nested files.
• path can be either an absolute path (a complete path from the root directory to the directory

whose existence is to be confirmed) or a relative path (starting from the current directory to the
path whose existence is to be confirmed).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.

Programming Tips and Gotchas

• The Delete method permanently deletes directories and their contents. It doesn't move them
to the Recycle Bin.

• Care must be taken when setting recursive to True due to the danger of accidentally
removing files, especially since the method does not prompt whether it should delete any
folders or files.

• If the user has adequate rights, the source or destination can be a network path or share
name. For example:

• Directory.Delete("\\NTSERV1\d$\RootTwo")
Directory.Delete("\\RootTest")

Directory.Exists Method

Class

System.IO.Directory

Syntax
Directory.Exists(path)
path

Use: Required

Data Type: String

The path of the directory whose existence is to be determined

Return Value

True if the specified path exists; False otherwise

Description

Determines whether a given directory exists

Rules at a Glance

 263

• path can be either an absolute path (a complete path from the root directory to the directory
whose existence is to be confirmed) or a relative path (starting from the current directory to the
path whose existence is to be confirmed).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.

Directory.GetCreationTime Method

Class

System.IO.Directory

Syntax
Directory.GetCreationTime(path)
path

Use: Required

Data Type: String

A valid path

Return Value

A Date value indicating the creation date and time of the directory

Description

Indicates when a given directory was created

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the directory
whose creation time is to be retrieved) or a relative path (starting from the current directory to
the directory whose creation time and existence is to be retrieved).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.

Directory.GetDirectories Method

Class

System.IO.Directory

 264

Syntax
Directory.GetDirectories(path [, searchpattern])
path

Use: Required

Data Type: String

A valid path to a directory

searchpattern

Use: Optional

Data Type: String

A directory specification, including wildcard characters

Return Value

An array of strings, each element of which is the name of a subdirectory

Description

Returns the names of the subdirectories in a particular directory

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the directory
whose subdirectories are to be retrieved) or a relative path (starting from the current directory
to the directory whose subdirectories are to be retrieved).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.
• If searchpattern is specified, the method returns only those directories whose names

match the string, which can contain wildcard characters. Otherwise, searchpattern returns
the names of all the subdirectories in the target directory specified by path.

• If the directory specified by path has no subdirectories, or if no directories match
searchpattern, an empty array is returned.

Example

The following code displays all subdirectories of c:\ whose names start with the letter P:

Dim sDirs() As String
Dim i As Integer
sDirs = Directory.GetDirectories("c:\", "P*")
For i = 0 To UBound(sDirs)
 Console.WriteLine(sDirs(i))
Next

Programming Tips and Gotchas

 265

Since GetDirectories can return an empty array, you can prevent an array access error in either of two
ways: you can iterate the returned array using the For Each...Next construct, or you can retrieve
the value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetFiles Method, Directory.GetFileSystemEntries Method

Directory.GetDirectoryRoot Method

Class

System.IO.Directory

Syntax
Directory.GetDirectoryRoot(path)
path

Use: Required

Data Type: String

A valid path to a directory

Return Value

A String containing the name of the root directory of path

Description

Returns the name of the root directory of the drive on which path resides (assuming that path is
valid). For example, the code:

Directory.GetDirectoryRoot("c:\program files\accessories")

returns the string C:\ as the root directory.

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the target
directory) or a relative path (starting from the current directory to the target directory).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path. For example, the code:

Directory.GetDirectoryRoot("\\Pentium\C\AFolder")

returns \\Pentium\C, and if the folder \\Pentium\C\AFolder maps to the network drive Z,
then:

 266

Directory.GetDirectoryRoot("Z:\temp")

returns Z:\.

• path cannot contain wildcard characters.

See Also

Directory.GetParent Method

Directory.GetFiles Method

Class

System.IO.Directory

Syntax
Directory.GetFiles(path [, searchpattern])
path

Use: Required

Data Type: String

A valid path to a directory

searchpattern

Use: Optional

Data Type: String

A file specification, including the wildcard characters * and ?

Return Value

An array of strings, each element of which contains the name of a file

Description

Returns the names of the files in a specified directory

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the directory
whose filenames are to be retrieved) or a relative path (starting from the current directory to
the directory whose filenames are to be retrieved).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

 267

• path cannot contain wildcard characters.
• If searchpattern is specified, the method returns only those files whose names match the

string, which can contain wildcard characters. Otherwise, the function returns the names of all
the files in the path directory.

• If the directory specified by path has no files, or if no files match searchpattern, an empty
array is returned.

Example

The following code displays all files in c:\ that have the extension .txt:

Dim sFiles() As String
Dim i As Integer
sFiles = Directory.GetFiles("c:\", "*.txt")
For i = 0 To UBound(sFiles)
 Console.WriteLine(sFiles(i))
Next

Programming Tips and Gotchas

Since GetFiles can return an empty array, you can prevent an array-access error in either of two ways:
you can iterate the returned array using the For Each...Next construct, or you can retrieve the
value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFileSystemEntries Method

Directory.GetFileSystemEntries Method

Class

System.IO.Directory

Syntax
Directory.GetFileSystemEntries(path [, searchpattern])
path

Use: Required

Data Type: String

A valid path to a directory

searchpattern

Use: Optional

Data Type: String

 268

A file specification, including wildcard characters

Return Value

An array of strings, each element of which contains the name of a filesystem entry (that is, a file or
directory) in the path directory

Description

Returns the names of the filesystem entries (that is, of files and directories) in a specified directory

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the directory
whose entries are to be retrieved) or a relative path (starting from the current directory to the
directory whose entries are to be retrieved).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.
• If searchpattern is specified, the method returns only those filesystem entries whose

names match the string, which can contain wildcard characters. Otherwise, the function
returns the names of all the filesystem entries in the target directory specified by path.

• If the directory specified by path has no filesystem entries, or if no filesystem entries match
searchpattern, an empty array is returned.

Example

The following code displays all filesystem entries in c:\:

Dim sEntries() As String
Dim i As Integer
sEntries = Directory.GetFileSystemEntries("c:\")
For i = 0 To UBound(sEntries)
 Console.WriteLine(sEntries (i))
Next

Programming Tips and Gotchas

• The GetFileSystemEntries method combines the functionality of the GetDirectories and
GetFiles methods.

• Since GetFileSystemEntries can return an empty array, you can prevent an array-access error
in either of two ways: you can iterate the returned array using the For Each...Next
construct, or you can retrieve the value of the UBound function, which is -1 in the case of an
uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFiles Method

Directory.GetLogicalDrives Method

 269

Class

System.IO.Directory

Syntax
Directory.GetLogicalDrives()

Return Value

An array of strings, each element of which contains the name of the root directory on each logical drive
on a system

Description

Retrieves the names of all logical drives and root directories on a system

Rules at a Glance

In the case of a mapped network drive, GetLogicalDrives returns the letter to which the drive is
mapped. For instance, if the folder \\Pentium\C\AFolder is mapped to the Z drive, then
GetLogicalDrives will return Z:\ for this logical drive.

Example
Dim sDrives() As String
Dim i As Integer
sDrives = Directory.GetLogicalDrives()
For i = 0 To UBound(sDrives)
 Console.WriteLine(sDrives(i))
Next

On my system, this code displays the following:

A:\
C:\
D:\
E:\
F:\
G:\

Directory.GetParent Method

Class

System.IO.Directory

Syntax
GetParent(path)
path

Use: Required

 270

Data Type: String

A valid path to a directory

Return Value

A DirectoryInfo object representing the parent directory of path (assuming that path is valid).

Rules at a Glance

• path can be either an absolute path (a complete path from the root directory to the directory
whose filenames are to be retrieved) or a relative path (starting from the current directory to
the directory whose filenames are to be retrieved).

• path can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

• path cannot contain wildcard characters.

Programming Tips and Gotchas

The DirectoryInfo object has properties Name and ToString (among others). The Name property
returns only the name of the directory, while the ToString property returns its absolute path. Thus, the
following code displays the string program files:

MsgBox(Directory.GetParent("c:\program files\accessories").Name)

whereas the following code displays the string c:\program files:

MsgBox(Directory.GetParent("c:\program files\accessories").ToString)

See Also

Directory.GetDirectoryRoot Method

Directory.Move Method

Class

System.IO.Directory

Syntax
Directory.Move(sourcedirname, destdirname)
sourcedirname

Use: Required

Type: String

The name of the directory to be moved

 271

destdirname

Use: Required

Data Type: String

The location to which the source drive and its contents are to be moved

Return Value

None

Description

Moves a directory and all its contents, including nested subdirectories and their files, to a new location

Rules at a Glance

• sourcedirname can be either an absolute path (a fully qualified path from the root directory
to the directory to be moved) or a relative path (starting from the current directory to the
directory to be moved).

• sourcedirname and destdirname can be either a path on the local system, the path of a
mapped network drive, or a UNC path.

• Neither sourcedirname nor destdirname can contain wildcard characters.
• destdirname must be either a fully qualified path or a relative path.
• destdirname can also be an absolute path or a relative path, except that it must include the

name to be assigned to the moved directory. This allows you to rename the directory at the
same time as you move it.

• If the directory indicated by destdirname already exists, an error occurs.

Example

Suppose that the C drive contains the following folders:

c:\docs\letters
c:\Documents and Settings

Moving the letters folder to make it a subdirectory of c:\Documents and Settings is done by the
following code:

Directory.Move("c:\docs\letters", _
 "c:\Documents and Settings\letters")

Thus, the first argument is the fully qualified name of the folder to move. The second argument is the
path that results after the move is made, whereas one might have expected this argument to be the
target folder for letters, which is c:\Documents and Settings.

See Also

Directory.Delete Method

Do...Loop Statement

 272

Syntax
Do [{While | Until} condition]
 [statements]
[Exit Do]
 [statements]
Loop

or:

Do
 [statements]
[Exit Do]
 [statements]
Loop [{While | Until} condition]
condition

Use: Optional

Data Type: Boolean expression

An expression that evaluates to True or False

statements

Use: Optional

Program statements that are repeatedly executed while, or until, condition is True

Description

Repeatedly executes a block of code while or until a condition becomes True

Rules at a Glance

• On its own, Do...Loop infinitely executes the code that is contained within its boundaries.
You therefore need to specify within the code under what conditions the loop is to stop
repeating. In addition, if the loop executes more than once, the variable controlling loop
execution must be modified inside of the loop. For example:

• Do
• intCtr = intCtr + 1 ' Modify loop control variable
• MsgBox("Iteration " & intCtr & " of the Do loop...")
• ' Compare to upper limit
• If intCtr = 10 Then Exit Sub

Loop

Failure to do this results in the creation of an endless loop.

• Adding the Until keyword after Do instructs your program to Do something Until the
condition is True. Its syntax is:

• Do Until condition
• 'code to execute

Loop

 273

If condition is True before your code gets to the Do statement, the code within the
Do...Loop is ignored.

• Adding the While keyword after Do repeats the code while a particular condition is True.
When the condition becomes False, the loop is automatically exited. The syntax of the Do
While statement is:

• Do While condition
• 'code to execute

Loop

Again, the code within the Do...Loop construct is ignored if condition is False when the
program arrives at the loop.

• In some cases, you may need to execute the loop at least once. You might, for example,
evaluate the values held within an array and terminate the loop if a particular value is found. In
that case, you would need to execute the loop at least once. To accomplish this, you can
place the Until or the While keyword along with the condition after the Loop statement.
Do...Loop Until always executes the code in the loop at least once, and continues to loop
until the condition is True. Likewise, Do...Loop While always executes the code at least
once, and continues to loop while the condition is True. The syntax of these two statements is
as follows:

• Do
• 'code to execute
• Loop Until condition
•
• Do
• 'code to execute

Loop While condition

• A Null condition is treated as False.
• Your code can exit the loop at any point by executing the Exit Do statement.

Programming Tips and Gotchas

You'll also encounter situations in which you intend to execute the loop continually while or until a
condition is True, except in a particular case. This type of exception is handled using the Exit Do
statement. You can place as many Exit Do statements within a Do...Loop structure as you require.
As with any exit from a Do...Loop, whether it is exceptional or normal, the program continues
execution on the line directly following the Loop statement. The following code fragment illustrates the
use of Exit Do:

Do Until condition1
 '
code to execute

 If condition2 Then
 Exit Do
 End if
 '
more code to execute - only if condition2 is false

Loop

See Also

 274

While...End While Statement

E Field

Class

System.Math

Syntax
Math.E

Description

This field returns the approximate value of the irrational number e, which is the base of the natural
logarithm and the base of the natural exponential function. In particular:

Math.E = 2.71828182845905

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The E Field is new to VB .NET.

See Also

Pi Field

End Statement

Syntax
End
End Class
End Enum
End Function
End Get
End If
End Interface
End Module
End Namespace
End Property
End Select
End Set
End Structure

 275

End Sub
End SyncLock
End Try
End With
End While

Description

Ends a procedure or a block of code

Rules at a Glance

The End statement is used as follows:

Statement Description
End Terminates program execution
End Class Marks the end of a class definition
End Enum Marks the end of a series of enumerated constants
End Function Marks the end of a Function procedure
End Get Marks the end of a Property Get definition
End If Marks the end of an If...Then...Else statement
End Interface Marks the end of an interface definition
End Module Marks the end of a code module
End Namespace Markes the end of a namespace definition
End Property Marks the end of a Property Let, PropertyGet, or Property Set procedure
End Select Marks the end of a Select Case statement.
End Set Marks the end of a Property Set definition
End Structure Ends the definition of a structure or user-defined type
End Sub Marks the end of a Sub procedure
End SyncLock Terminates synchronization code
End Try Marks the end of a Try...Catch statement
End With Marks the end of a With statement
End While Marks the end of a While statement

Programming Tips and Gotchas

When used alone, the End statement wraps calls to the private FileSystem.CloseAllFiles function, as
well as to the System.Environment object's Exit method, making it relatively safe to call to terminate an
application. However, it does not release resources not automatically handled by the garbage collector,
and does not automatically call the Finalize destructor.

VB .NET/VB 6 Differences

• In VB 6, the End statement used by itself was to be avoided, since it terminated program
execution abruptly without performing normal cleanup operations. In VB .NET, End is much
safer, and is not to be avoided.

• A number of the End... statements are new to VB .NET. These include End Class (classes
are defined in saparate CLS files in VB 6), End Get (Property Get statements are terminated
with an End Property statement in VB 6), End Interface (interfaces are implemented as
virtual base classes in VB 6), End Module (code modules are defined in separate BAS files in
VB 6), End Namespace (namespaces do not exist in VB 6), End Set (Property Set and

 276

Property Let statements are terminated with an End Property statement in VB 6), End Try
(VB 6 does not support structured exception handling), and End While (VB 6 supports the
Wend statement to terminate a While loop).

See Also

Exit Statement

Enum Statement

Syntax
accessmodifier Enum name [As type]
 membername [= constantexpression]
 membername [= constantexpression]
 ...
End Enum
accessmodifier

Use: Optional

Type: Keyword

The possible values of accessmodifier are Public, Private, Friend, Protected, or
Protected Friend. For more information, see Section 3.7 in Chapter 3.

name

Use: Required

Type: String literal

The name of the enumerated data type.

membername

Use: Required

Type: String literal

The name of a member of the enumerated data type.

constantexpression

Use: Optional

Data Type: Long

The value to be assigned to membername.

type

 277

Use: Optional

Type: Keyword

The data type of the enumeration. All enumerated members must be integers; possible values
are Byte, Short, Integer, and Long.

Description

Defines an enumerated data type. All of the values of the data type are defined by the instances of
membername.

Rules at a Glance

• The Enum statement can only appear at module level, in the declarations section of a form,
code module, or class module.

• Access rules for Enums are the same as for variables and constants. In particular, the optional
accessmodifier can be any one of the following: Public, Private, Protected, Friend,
or Protected Friend. The following table describes the effects of the various access
modifiers:

 Direct access scope Class/object access scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

• constantexpression can be either a negative or a positive number. It can also be another
member of an enumerated data type or an expression that includes integers and enumerated
data types.

• If you assign a floating point value to constantexpression, it is automatically rounded and
converted to an integer only if Option Strict is off; otherwise, it generates a compiler error.

• If you do not specify type, it defaults to Integer.
• If constantexpression is omitted, the value assigned to membername is 0 if it is the first

expression in the enumeration. Otherwise, its value is 1 greater than the value of the
preceding membername.

• The values assigned to membername cannot be modified at runtime.

Programming Tips and Gotchas

• Once you define an enumerated type, you can use name as the return value of a function. For
example, given the enumeration:

• Public Enum enQuarter
• enQ1 = 1
• enQ2 = 2
• enQ3 = 3
• enQ4 = 4

End Enum

you can use it as the return value of a function, as illustrated by the following function
declaration:

 278

Public Function QuarterFromDate(datVar as Date) _
 As enQuarter

You can also use it in a procedure's parameter list when defining a parameter's data type, as
in the following code fragment:

Public Function GetQuarterlySales(intQ As enQuarter) _
 As Double

• Although you can declare an enumerated type as the argument to a procedure or the return
value of a function, VB .NET does not provide type safety in these cases. That is, if the value
of the argument or the return value of the function is outside of the range of the enumerated
type, VB .NET does not generate an error. In cases such as these, you should rely on
validation routines to make sure that an input value is in fact within the range of an
enumerated type.

• Individual values of an enumerated type can be used in your program just like normal
constants, except that they must be prefaced with the name of the enumeration.

• Enumerated types provide the advantage of allowing you to replace numeric values with more
mnemonic labels and of allowing you to select values using the Auto List Members feature in
the Visual Studio IDE.

VB .NET/VB 6 Differences

• In VB 6, members of an enumeration can be accessed without having to qualify them with the
name of the enumeration to which they belong. In VB .NET, this behavior is not permitted; all
members of an enumeration can only be accessed by referring to the name of their
enumeration.

• In VB 6, all enumerated members are Longs. In contrast, VB .NET allows you to define the
integer data type of the enumeration's members.

• In VB 6, members of a public enumeration can be hidden from the Object Browser by adding a
leading underscore to the member name. For example, in the enumeration:

• Public Enum Primes
• [_x0] = 0
• x1 = 1
• x2 = 3

End Enum

the constant _x0 is hidden in Intellisense and the Object Browser unless the Object Browser's
Show Hidden Members option is selected. In Visual Studio .NET, a leading underscore does
not hide a member.

See Also

Const Statement

Environ Function

Class

Microsoft.VisualBasic.Interaction

 279

Syntax
Environ(expression)
expression

Use: Required

Data Type: String, or a numeric expression

If expression is a string, it must be the name of the required environment variable; if
expression is numeric, it must be the 1-based ordinal number of the environment variable
within the environment table.

Return Value

A String containing the text assigned to expression

Description

Returns the value assigned to an operating-system environment variable

Rules at a Glance

• A zero-length string ("") is returned if expression does not exist in the operating system's
environment-string table or if there is no environment string in the position specified by
expression.

• expression can be either a string or a numeric expression; that is, you can specify one or
the other, but not both.

Example
Public Module modMain

Public Structure env
 Dim strVarName As String
 Dim strValue As String
End Structure

Public Sub Main()

Dim intCtr, intPos As Integer
Dim strRetVal As String
Dim udtEnv As env

intCtr = 1
Do
 strRetVal = Environ(intCtr)
 If strRetVal <> "" Then
 intPos = InStr(1, strRetVal, "=")
 udtEnv.strVarName = Left(strRetVal, intPos - 1)
 udtEnv.strValue = Mid(strRetVal, intPos + 1)
 Console.Writeline(udtEnv.strVarName & ": " & udtEnv.strValue)
 Else
 Exit Do
 End If
 intCtr = intCtr + 1
Loop

 280

End Sub
End Module

Programming Tips and Gotchas

• If expression is numeric, both the name and the value of the variable are returned. An equal
sign (=) is used to separate them. For example, the function call Environ(1) might return the
string TEMP=C:\WINDOWS\TEMP.

• If you retrieve environment variables and their values by ordinal position, the first variable is in
position 1, not position 0.

• Due to the flexibility offered, it is now accepted and recommended practice to use the registry
for variables needed by your application, rather than the environment-string table.

• Environment variables can be defined in a variety of ways, including by the AUTOEXEC.BAT
and MSDOS.SYS files, as well as by the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\En
vironment and HKEY_CURRENT_USER\Environment keys in the registry.

VB .NET/VB 6 Differences

• In VB 6, the Environ function retrieved environmental variables and their values only from the
environment-string table. In VB .NET, the function retrieves values both from the environment-
string table and the system registry.

• In VB 6, the function could be called using either the envstring named argument (if the
argument was the name of an environment variable) or the number named argument (if the
number represented the ordinal position of the variable in the environment table). VB .NET
replaces these with a single named argument, expression.

EOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
EOF(filenumber)
filenumber

Use: Required

Data: Integer

Any valid file number

Return Value

A Boolean indicating when the end of the file has been reached

Description

 281

Returns a Boolean indicating when the end of the file has been reached. Applies to files opened for
binary, random, or sequential input.

Rules at a Glance

• filenumber must be an Integer that specifies a valid file number.
• If a file is opened for binary access, you cannot use EOF with the Input procedure. Instead,

use LOF and Loc. If you want to use EOF, you must use FileGet rather than Input. In this
case, EOF returns False until the previous FileGet procedure is unable to read an entire
record.

Example
Dim fr As Integer = FreeFile()
Dim sLine As String
FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read, _
 OpenShare.Default, -1)
Do While Not EOF(fr)
 sLine = LineInput(fr)
 Debug.WriteLine(sLine)
Loop

Programming Tips and Gotchas

• EOF allows you to test whether the end of a file has been reached without generating an error.
• Because you always write data to sequential files at the end of the file, the file marker is

always at the end of the file, and EOF will therefore always return True when testing files
opened with their modes set equal to either Input or Append.

See Also

LOF Function

Erase Statement

Syntax
Erase arraylist
arraylist

Use: Required

Data Type: String literal

A list of array variables to clear

Description

Releases an array object. This is equivalent to setting the array variable to Nothing.

Rules at a Glance

 282

• Specify more than one array to be erased by using commas to delimit arraylist.
• The Erase statement causes all memory allocated to arrays to be released.

Programming Tips and Gotchas

Once you use Erase to clear an array, it must be redimensioned with ReDim before being used again.
This is because Erase releases the memory storage used by the array.

See Also

Dim Statement, ReDim Statement

Erl Property

Class

Microsoft.VisualBasic.Information

Syntax
Erl

Return Value

An Integer containing the line number

Description

Indicates the line number on which an error occurred

Rules at a Glance

• Erl returns the line number only if one has been provided in the source code.
• If the error occurs on a line that does not have a line number, Erl returns 0.

Programming Tips and Gotchas

• Erl is not affected by compiler settings. Compiling with the /debug- switch does not prevent Erl
from accurately reporting the line number.

• Line numbers are rarely used in modern VB code. In VB.NET, line numbers are labels that
must be followed by a colon.

• Although programmers have been requesting an error-handling function that reports the line
number on which an error occurred, Erl has one major limitation: namely, it requires that the
developer assign a line number to source code lines in advance.

• Erl is not new to VB .NET. It was an undocumented and little known function in previous
versions of Visual Basic (and of QBasic as well).

VB .NET/VB 6 Differences

 283

In VB 6, line numbers are distinct from labels, and do not require that any symbol (other than white
space) separate them from that their lines' source code. In VB .NET, line numbers are labels that must
be followed by a colon.

Err Object

Class

Microsoft.VisualBasic.ErrObject

Createable

No

Description

The Err object contains properties and methods that allow you to obtain information about a single
runtime error in a Visual Basic program. The Err object also lets you generate errors and reset the
error object. Because the Err object is an intrinsic object with global scope (which means that it is part
of every VB project you create), you do not need to create an instance of it within your code.

When an error is generated in your application—whether it is handled or not—the properties of the Err
object are assigned values that you can then access to gain information about the error that occurred.
You can even generate your own errors explicitly using the Err.Raise method. You can also define
your own errors to unify the error-handling process.

When your program reaches an Exit Function, Exit Sub, Exit Property, Resume, or On Error
statement, the Err object is cleared and its properties reinitialized. This can also be done explicitly
using the Err.Clear method.

Public Instance Properties
Property

name Description

Description The string associated with the given error number
HelpContext A context ID within a Visual Basic Help file
HelpFile The path to a Visual Basic Help file
LastDLLError The last error code generated by a DLL; available only on 32-bit Windows systems
Number A long integer used to describe an error (i.e., an error code)

Source Either the name of the current project or the class name of the application that
generated the error

Public Instance Methods
Method name Description

Clear Resets all the properties of the Err object
Raise Forces an error of a given number to be generated

Programming Tips and Gotchas

 284

• The Visual Basic Err object is not a collection; it only contains information about the last error,
if one occurred. You could, however, implement your own error collection class to store a
number of errors by copying error information from the Err object into an application-defined
error collection object.

• An Err object cannot be passed back from a class module to a standard code module.
• VB also supports structured error-handling through the Try...Catch...Finally statement.
• For a full description of error handling, see Chapter 7.

See Also

Err.Description Property, Err.HelpContext Property, Err.HelpFile Property, Err.Number
Property, Err.Source Property

Err.Clear Method

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.Clear()

Description

Explicitly resets all the properties of the Err object after an error has been handled

Rules at a Glance

You only need to clear the Err object if you need to reference its properties for another error within the
same subroutine, or before another On Error statement within the same subroutine.

Example
On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then
 MsgBox ("The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source)
 Err.Clear
End If

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then
 MsgBox ("The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source)
 Err.Clear
End If

Programming Tips and Gotchas

 285

• Resetting the Err object explicitly using the Clear method is necessary in situations where you
are using On Error Resume Next and are testing the value of Err.Number repeatedly.
Unless you reset the Err object, you run the very real risk of catching the previously handled
error, the details of which are still lurking in the Err object's properties.

• The Err object is automatically reset when either a Resume, Exit Sub, Exit Function,
Exit Property, or On Error statement is executed.

• You can achieve the same results by setting the Err.Number property to 0; however, your
code will be more readable if you use the Clear method.

• VB also supports structured error-handling through the Try...Catch...Finally statement.
• Internally, in VB .NET the Err object is an instance of the Microsoft.VisualBasic.ErrObject

class. It is returned by the Err property of the Microsoft.VisualBasic.Information class.

See Also

Err.Raise Method

Err.Description Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

To set the property:

Err.Description = string

To return the property value:

string = Err.Description
string

Use: Required

Data Type: String

Any string expression

Description

A read/write property containing a short string describing a runtime error

Rules at a Glance

• When a runtime error occurs, the Description property is automatically assigned the standard
description of the error.

• For application-defined errors, you must assign a string expression to the Description property,
or the error will not have an accompanying textual message.

 286

• You can override the standard description by assigning your own description to the Err object
for both VB errors and application-defined errors.

Programming Tips and Gotchas

• If an error occurs within a class module, an ActiveX DLL, or an EXE—regardless of whether it
is running in or out of your application's process space—no error information from the
component will be available to your application unless you explicitly pass back an error code
as part of the error-handling routine within the component. This is done using the Err.Raise
method, which allows you to raise an error on the client, passing custom arguments for
Number, Source, and Description.

• If you raise an error with the Err.Raise method and do not set the Description property, the
Description property will be automatically set to "Application-efined or Object-Defined Error."

• You can also pass the Err.Description to a logging device, such as a log file in Windows 95 or
the application log in Windows NT, by using the App.LogEvent method, as the following code
fragment demonstrates:

• EmployeesAdd_Err:
• App.LogEvent "EmployeesAdd" & "; " & _

 Err.Description, vbLogEventTypeError

• The best way to set the Description property for your own application-defined errors is to use
the named-description argument with the Raise method, as the following code shows:

• Sub TestErr()
•
• On Error GoTo TestErr_Err
•
• Err.Raise 65444, _
• Description="Meaningful Error Description"
•
• TestErr_Exit:
• Exit Sub
• TestErr_Err:
• MsgBox (Err.Description)
• Resume TestErr_Exit
•

End Sub

• VB also supports structured error-handling through the Try...Catch...Finally statement.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property, Err.Source Property

Err.GetException Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

 287

Err.GetException()

Return Value

A System.Exception object or an object inherited from it containing the current exception

Description

Returns the Exception object associated with the current exception

Rules at a Glance

• The GetException method can be called at any time in a program.
• If there is no exception, the method returns an uninitialized exception object (i.e., an object

whose value is Nothing).

Example

The following code renames a file:

Private Sub RenameFile()
Dim sOldName, sNewName As String
Try
 sOldName = InputBox("Enter the file name to rename")
 sNewName = InputBox("Enter the new file name")
 Rename("c:\" & sOldName, "c:\" & sNewName)
Catch ex As Exception
 MsgBox(Err.GetException().ToString)
 Exit Sub
End Try
End Sub

If the user inputs an invalid filename in the first input box, the result is the following message that
displays information about the error:

System.IO.FileNotFoundException: File not found at
Microsoft.VisualBasic.FileSystem.Rename(String OldPath, String NewPath)
at WindowsApplication2.Form1.RenameFile() in
C:\Documents and Settings\sr\My Documents\Visual Studio Projects\
ClipboardSave2\WindowsApplication2\Form1.vb:line 59

Programming Tips and Gotchas

• The Err.GetException method can be used with the unstructured On Error Resume Next
statement as well as with the Try...Catch...End Try structure.

• Since GetException is a member of the Err object, its major application is to provide access to
error information stored to an instance of the Exception class from code that relies on
unstructured exception handling.

VB.NET/VB6 Differences

The GetException method is new to VB.NET.

See Also

 288

Exception Class

Err.HelpContext Property

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.HelpContext

Description

A read/write property that either sets or returns an Integer value containing the context ID of the
appropriate topic within a Help file.

Rules at a Glance

• The Err object sets the HelpContext property automatically when an error is raised if
Err.Number is a standard VB .NET error.

• If the error is user-defined and you don't explicitly set the HelpContext property yourself, the
Err object will set the value to 1000095, which corresponds to the "Application-defined or
object-defined error" help topic in the VB Help file. (The HelpContext property is set by the fifth
parameter to the Err.Raise method.

• HelpContext IDs are decided upon when writing and creating a Windows Help file. Once the
Help file has been compiled, the IDs cannot be changed. Each ID points to a separate Help
topic.

Example
Sub TestErr()

On Error GoTo TestErr_Err

 Dim i
 i = 8

 MsgBox(i / 0)

TestErr_Exit:
 Exit Sub

TestErr_Err:
 MsgBox(Err.Description, vbMsgBoxHelpButton, "ErrorVille", _
 Err.HelpFile, Err.HelpContext)
 Resume TestErr_Exit

End Sub

Programming Tips and Gotchas

• You can display a topic from the Visual Basic Help file by using the MsgBox function with the
vbMsgBoxHelpButton constant and passing Err.HelpContext as the HelpContext

 289

argument (as shown in the previous example). While this is a simple and very effective way to
add much more functionality to your applications, bear in mind that some of your users could
find the explanations within the VB Help file somewhat confusing. If time and budget allow, the
best method is to create your own help file (for which you will need the Help compiler and
other Help file resources from the full version of VB) and to pass both the HelpContext and
HelpFileName to MsgBox.

• Some objects that you may use within your application have their own help files, which you
can access using HelpContext to display highly focused help to your users.

See Also

Err.HelpFile Property, Err.Number Property, Err.Source Property

Err.HelpFile Property

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.HelpFile

Description

A read/write String property that contains the fully qualified path of a Windows Help file.

Rules at a Glance

The HelpFile property is automatically set by the Err object when an error is raised.

Example

See Err.HelpContext Property.

Programming Tips and Gotchas

• You can display a topic from the Visual Basic Help file by using the MsgBox function with the
vbMsgBoxHelpButton constant and passing Err.HelpFile as the HelpFile argument
(as shown in the example for the Err.HelpContext property). While this is a simple and very
effective way to add more functionality to your applications, bear in mind that some of your
users could find the explanations within the VB Help file somewhat confusing. If time and
budget allow, the best method is to create your own help file (for which you will need the Help
compiler and other Help file resources from the full version of VB) and to pass both the
HelpContext and HelpFileName to MsgBox.

• Some objects that you may use within your application have their own help files, which you
can access using HelpFile to display highly focused help to your users.

• Remember that once the program encounters an Exit... statement or an On Error
statement, all the properties of the Err object are reset; this includes the Help file. You must
therefore set the Err.HelpFile property each time that your application needs to access the
help file.

 290

See Also

Err.HelpContext Property, Err.Number Property

Err.LastDLLError Property

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.LastDLLError

Description

A read-only property containing a system error code representing a system error produced within a
DLL called from a VB program.

Rules at a Glance

• Only direct calls to a Windows system DLL from VB code will assign a value to LastDLLError.
• The value of the LastDLLError property depends upon the particular DLL being called. Your

code must be able to handle the various codes that can be returned by the DLL you are calling.
• Don't forget that a failed DLL call does not itself raise an error within your VB program. As a

result, the Err object's Number, Description, and Source properties are not filled.

Programming Tips and Gotchas

• The LastDLLError property can be changed by VB at any time, so it is important to save the
value in an independent variable as soon as possible.

• The LastDLLError property is only used by system DLLs, such as kernel32.dll. Therefore,
errors that occur within DLLs you may have created will not cause an error code to be
assigned to the property.

• Obtaining accurate documentation about the return values of system DLLs can be a
challenging experience! Most useful information can be found by studying the API
documentation for Visual C++. However, you can use the Win32 API FormatMessage function
to return the actual Windows error message string from within Kernel32.DLL, which
incidentally will also be in the correct language. The following is a brief example that you can
use in your applications to display the actual Windows error description:

• Module modMain
• Declare Function FormatMessage Lib "kernel32" _
• Alias "FormatMessageA" (_
• ByVal dwFlags as Integer, ByRef lpSource As Integer, /
• ByVal dwMessageId As Integer, _
• ByVal dwLanguageId As Integer, _
• ByVal lpBuffer As String, ByVal nSize As Integer, _
• By Ref Arguments As Integer) As Integer
•
• Public Const FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000
• Public Const FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200

 291

•
• Function apiErrDesc (iErrCode As Integer) As String
• Dim sErrDesc As String = Space(256)
• Dim iReturnLen, lpNotUsed As Integer
•
• iReturnLen = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM _
• Or FORMAT_MESSAGE_IGNORE_INSERTS, _
• lpNotUsed, iErrCode, 0&, sErrDesc, _
• Len(sErrDesc), lpNotUsed)
• if iReturnLen > 0 Then
• apiErrDesc = Left(sErrDesc, iReturnLen)
• End If
• End Function

End Module

Here's a snippet demonstrating how you can use this utility function:

lReturn = SomeAPICall(someparams)
If lReturn <> 0 then
 Err.Raise(Err.LastDLLError & vbObjectError, _
 "MyApp:Kernel32.DLL", _
 apiErrDesc(Err.LastDLLError))
End If

• Note that some API calls return 0 to denote a successful function call, and others return 0 to
denote an unsuccessful call. You should also note that some API functions do not appear to
set the LastDLLError property. In most cases, these are functions that return an error code.
You could therefore modify the previous snippet to handle these cases:

• lReturn = SomeAPICall(someparams)
• If lReturn <> 0 then
• If Err.LastDLLError <> 0 Then
• Err.Raise(Err.LastDLLError & vbObjectError, _
• "MyApp:Kernel32.DLL", _
• apiErrDesc(Err.LastDLLError))
• Else
• Err.Raise(lReturn & vbObjectError, _
• "MyApp:Kernel32.DLL", _
• apiErrDesc(lReturn))
• End If

End If

See Also

Err Object

Err.Number Property

Class

Microsoft.VisualBasic.ErrObject

 292

Syntax
Err.Number

Description

A read/write property containing a numeric value that represents the error code for the last error
generated.

Rules at a Glance

• When a runtime error is generated within the program, the error code is automatically
assigned to Err.Number.

• The Number property is updated with an application-defined error whose code is passed as an
argument to the Err.Raise method.

• When using the Err.Raise method in normal code, your user-defined error codes cannot be
greater than 65536 nor less that 0. (For an explanation, see the final note in Programming
Tips and Gotchas of Err.Raise Method.)

• VB reserves error numbers in the range of 1-1000 for its own trappable errors. In addition,
error numbers from 31001 to 31037 are also used for VB trappable errors. In implementing a
series of application-defined errors, your error handlers should either translate application
errors into VB trappable errors or, preferably, assign a unique range to application-defined
errors.

• When using the Err.Raise method in ActiveX objects, add the vbObjectError constant (-
2147221504) to your user-defined error code to distinguish OLE errors from local-application
errors.

• When control returns to the local application after an error has been raised by the OLE server,
the application can determine that the error originated in the OLE server and extract the error
number with a line of code like the following:

• Dim lError as Long
• If (Err.Number And vbObjectError) > 0 Then
• lError = Err.Number - ObjectError

End If

Programming Tips and Gotchas

• An error code is a useful method of alerting your program that a function within an ActiveX or
class object has failed. By returning a number based on the vbObjectError constant, you
can easily determine that an error has occurred. (vbObjectError is a constant that is
defined in the Microsoft.VisualBasic.Constants class.) By then subtracting vbObjectError
from the value returned by the object's function, you can determine the actual error code:

• If Err.Number < 0 then
• Err.Number = Err.Number - ObjectError

End If

• You can create a sophisticated multiresult error-handling routine by using the Err.Number
property as the Case statement within a Select Case block, taking a different course of
action for different errors, as this snippet demonstrates:

• Select Case Err.Number
• Case < 0
• 'OLE Object Error
• Set oObject = Nothing
• Resume DisplayErrorAndExit
• Case 5
• 'increment the retry counter and try again
• iTries = iTries + 1

 293

• If iTries < 5 Then
• Resume RetryFunctionCall
• Else
• Resume DisplayErrorAndExit
• End If
• Case 20
• 'we almost expected this one!
• Resume Next
• Case Else
• Resume DisplayErrorAndExit

End Select

• Directly assigning a Visual Basic-defined error code to the Number property does not
automatically update the Description or other properties of the Err object.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Source Property

Err.Raise Method

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.Raise(number, source, description, _
 helpfile, helpcontext)
number

Use: Required

Data Type: Long integer

A numeric identifier of the particular error

source

Use: Optional

Data Type: String

The name of the object or application responsible for generating the error

description

Use: Optional

Data Type: String

 294

A useful description of the error

helpfile

Use: Optional

Data Type: String

The fully qualified path of a Microsoft Windows Help file containing help or reference material
about the error

helpcontext

Use: Optional

Data Type: Long

The context ID within helpfile

Description

Generates a runtime error

Rules at a Glance

• To use the Err.Raise method, you must specify an error number.
• If you supply any of the number, source, description, helpfile, and helpcontext

arguments when you call the Err.Raise method, they are supplied as values to the Number,
Source, Description, HelpFile, and HelpContext properties, respectively. Refer to the entries
for the individual properties for full descriptions of and rules for each property.

• The number argument is a Long integer that identifies the nature of the error. Visual Basic
errors (both Visual Basic-defined and user-defined errors) are in the range 0-65535. The
range 0-512 is reserved for system errors; the range 513-65535 is available for user-defined
errors. When setting the Number property to your own error code in a class module, you add
your error-code number to the vbObjectError constant.

Programming Tips and Gotchas

• The Err.Raise method replaces the older Error statement, which should not be used in new
code.

• The Raise method does not reinitialize the Err object prior to assigning the values you pass in
as arguments. This can mean that if you Raise an error against an Err object that has not
been cleared since the last error, any properties for which you don't specify values will still
contain the values from the last error.

• As well as using Raise in a runtime scenario, you can put it to good use in the development
stages of your program to test the viability of your error-handling routines under various
circumstances.

• The fact that Err.Number only accepts numbers in the range 0-65536 may appear to be
strange at first because the data type of the Error Number parameter in the Raise event is a
Long. However, deep in the recesses of the Err object, the error code must be declared as an
unsigned integer—a data type not supported by VB.

See Also

Err.Clear Method

 295

Err.Source Property

Class

Microsoft.VisualBasic.ErrObject

Syntax
Err.Source

Description

A read/write string property containing the name of the application or the object that has generated the
error.

Rules at a Glance

• When a runtime error occurs in your code, the Source property is automatically assigned the
project name (that is, the string that is assigned to the project's Name property). Note that this
is not necessarily the filename of the project file.

• For clarity of your error messages, when you raise an error in a class module, the format of
the source parameter should be project.class.

Programming Tips and Gotchas

Knowing what type of error has occurred within a program without knowing where the error was
generated is often of little use to the programmer. However, if you enhance the standard Source by
adding the name of the procedure, you can cut your debugging time dramatically.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property

Error Statement

Syntax
Error [errornumber]
errornumber

Use: Optional

Data Type: Long

Any valid error code

Description

 296

Raises an error

Rules at a glance

The Error statement is included only for backward compatibility; instead, if you're using standard
Visual Basic error handling, you should use the Err.Raise method and the Err object. Otherwise, you
should use structured exception handling with the Try...Catch construct.

Programming Tips and Gotchas

The Error statement has been a "compatibility" statement for several versions of Visual Basic.
Interestingly, it managed to survive the general purge of outdated language elements. Despite its
persistence, we still recommend that its use be strictly avoided.

See Also

Err.Raise Method, Try...Catch...Finally Statement

ErrorToString Function

Class

Microsoft.VisualBasic.Conversion

Syntax
ErrorToString([errornumber])
errornumber

Use: Optional

Data Type: Long

A numeric error code

Return Value

A String containing an error message

Description

Returns the error message or error description corresponding to a particular error code

Rules at a Glance

• If errornumber is present, the function returns the text of the error message corresponding
to that error code.

• If no arguments are passed to the function, it returns the text of the error message
corresponding to the Description property of the Err Object.

 297

See Also

Err.Description Property

Event Statement

Syntax
[Public] Event eventName [(arglist)]
Public

Use: Optional

Type: Keyword

Indicates that the event is visible throughout the project

eventName

Use: Required

Type: String literal

The name of the event

arglist is optional and has the following syntax:

[ByVal | ByRef] varname[()] [As type]
ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, a local copy of the variable is assigned the value of
the argument.

ByRef

Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable are reflected in the calling
argument. ByRef is the default method of passing variables.

varname

Use: Required

 298

Type: String literal

The name of the local variable containing either the reference or value of the argument.

type

Use: Optional

Type: Keyword

The data type of the argument. It can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, String, Object, or any user-defined type, object type, or data type
defined in the BCL.

Description

Defines a custom event that the object can raise at any time using the RaiseEvent statement.

Rules at a Glance

• The event declaration must be Public so that it is visible outside the object module; it cannot
be declared as Friend or Private. However, the Public keyword can be omitted from the
declaration, since it is Public by default.

• An Event statement can only appear in the Declarations section of an object module, that is,
in a form or class module.

Example

The following code snippet demonstrates how you can use an event to communicate a status
message back to the client application. To take advantage of this functionality, the client must declare
a reference to this class using the WithEvents keyword.

Public Event Status(Message As String)

Private Function UpdateRecords() as Boolean
...
 RaiseEvent Status "Opening the database..."
...
 RaiseEvent Status "Executing the query..."
...
 RaiseEvent Status "Records were updated..."
...
End Function

Programming Tips and Gotchas

• To allow the client application to handle the event being fired, the object variable must be
declared using the WithEvents keyword.

• VB custom events do not return a value; however, you can use a ByRef argument in
arglist to simulate a return value. For more details, see the RaiseEvent statement.

• Unlike parameter lists used with other procedures, Event parameters lists cannot include
Optional or ParamArray arguments or default values.

• If you use the Event statement in a standard interface class (i.e., a class in which only
properties and methods are defined, but no code is included in the procedures) for use with

 299

the Implements statement, the Implements statement does not recognize the "outgoing
interfaces" used by events, and therefore the event will be ignored.

• For more information about implementing your own custom events, see Section 6.2 in
Chapter 6.

See Also

RaiseEvent Statement

Exception Class

Namespace

System

Createable

Yes

Description

The Exception class and its inherited (child) classes represent runtime exceptions.

Selected Exception Class Members

The following provides a brief description of the more important members of the Exception class:

HelpFile property

Sets or retrieves a link to the help file associated with the exception. Its value is a Uniform
Resource Name (URN) or Uniform Resource Locator (URL).

InnerException property

Returns a reference to the inner Exception object in the case of nested exceptions.

Message property

Returns the text of the error message.

Source property

Returns or sets a string containing the name of the application or the object that causes the
error.

StackTrace property

Returns a string (the stack trace) consisting of a list of all methods that are currently in the
stack. The following shows a stack trace when the procedure DoArithmetic calls the procedure

 300

Arithmetic, which generates an exception that is thrown up to DoArithmetic (the string has
been formatted to fit the margins of the page):

at WindowsApplication6.Form1.Arithmetic(String Action, Double x,
Double y) in C:\Projects\WindowsApplication6\Form1.vb:line 68

at WindowsApplication6.Form1.DoArithmetic() in
C:\Projects\WindowsApplication6\Form1.vb:line 87

TargetSite property

Returns a MethodBase object representing the method that throws the exception. For
example, if e is the exception whose stack trace is shown in the discussion of the StackTrace
property, then the code.

e.TargetSite.Name

will return the string Arithmetic.

GetBaseException Method

This method returns the exception object for the innermost exception. For instance, in the
previous example (see the discussion of the StackTrace property) the code:

e.GetBaseException.ToString

returns the string:

System.ArithmeticException: There was an overflow or
underflow in the arithmetic operation.
 at WindowsApplication6.Form1.Arithmetic(String Action,
Double x, Double y) in
C:\Projects\WindowsApplication6\Form1.vb:line 68
 at WindowsApplication6.Form1.DoArithmetic() in
C:\Projects\WindowsApplication6\Form1.vb:line 87///

ToString Method

Returns the fully qualified name of the exception and possibly the error message, the name of
the inner exception, and the stack trace.

Children of the Exception Class

The System namespace contains the Exception class, which is the base class for a substantial
collection of derived exception classes, listed as follows. Note that the indentation indicates class
inheritance. For example, EntryPointNotFoundException (the fifth from the last entry in the list) inherits
from TypeLoadException.

Exception
 ApplicationException
 SystemException
 AccessException
 FieldAccessException
 MethodAccessException
 MissingMemberException
 MissingFieldException
 MissingMethodException
 AppDomainUnloadedException

 301

 AppDomainUnloadInProgressException
 ArgumentException
 ArgumentNullException
 ArgumentOutOfRangeException
 DuplicateWaitObjectException
 ArithmeticException
 DivideByZeroException
 NotFiniteNumberException
 OverflowException
 ArrayTypeMismatchException
 BadImageFormatException
 CannotUnloadAppDomainException
 ContextMarshalException
 CoreException
 ExecutionEngineException
 IndexOutOfRangeException
 StackOverflowException
 ExecutionEngineException
 FormatException
 InvalidCastException
 InvalidOperationException
 MulticastNotSupportedException
 NotImplementedException
 NotSupportedException
 PlatformNotSupportedException
 NullReferenceException
 OutOfMemoryException
 RankException
 ServicedComponentException
 TypeInitializationException
 TypeLoadException
 EntryPointNotFoundException
 TypeUnloadedException
 UnauthorizedAccessException
 WeakReferenceException
URIFormatException

Programming Tips and Gotchas

• As Microsoft states: "Most of the exception classes that inherit from Exception do not
implement additional members or provide additional functionality." Thus, it is simply the class
name that distinguishes one type of exception from another. The properties and methods
applied to an exception object are inherited from the Exception base class.

• You can trap the generic Exception object, or you can trap a specific exception object. There
are two circumstances in particular when you may want to trap a specific exception, rather
than the more general Exception object:

o You want to handle errors differently based on their class. For instance, you may want
to issue different custom error messages for different exception types.

o You want to take advantage of members of a particular exception class that are not
implemented in the Exception base class. For instance, the ArgumentException class
has a ParamName property that returns the name of the parameter that causes the
exception. If you trap the Exception class rather than the ArgumentException class,
this member is unavailable.

VB .NET/VB 6 Differences

The Exception class, along with Structured Exception Handling (SEH), is new to the .NET platform.

 302

Exit Statement

Syntax
Exit Do
Exit For
Exit Function
Exit Property
Exit Select
Exit Sub
Exit Try
Exit While

Description

Prematurely exits a block of code

Rules at a Glance
Exit Do

Exits a Do...Loop statement. If the current Do...Loop is within a nested Do...Loop,
execution continues with the next Loop statement wrapped around the current one. If,
however, the Do...Loop is standalone, program execution continues with the first line of
code after the Loop statement.

Exit For

Exits a For...Next loop or a For Each...Next statement. If the current For...Next is
within a nested For...Next loop, execution continues with the next Next statement
wrapped around the current one. If, however, the For...Next loop is standalone, program
execution continues with the first line of code after the Next statement.

Exit Function

Exits the current function. Program execution is passed to the line following the call to the
function.

Exit Property

Exits the current property procedure. Program execution is passed to the line following the call
to the property.

Exit Select

Immediately exits a Select Case construct. Execution continues with the statement
immediately following the End Select statement.

Exit Sub

Exits the current sub procedure. Program execution is passed to the line following the call to
the procedure.

 303

Exit Try

Immediately exits a Try...Catch block. Program execution proceeds with the Finally
block, if it is present, or with the statement following the End Try statement.

Exit While

Immediately exists a While loop. Program execution proceeds with the code following the
End While statement. If Exit While is within a nested While loop, it terminates the loop at
the level of nesting in which Exit While occurs.

Programming Tips and Gotchas

Using Exit Sub can save having to wrap lengthy code within an If...Then statement. Here is an
example with Exit Sub:

Sub MyTestSub(iNumber As Integer)
 If iNumber = 10 Then
 Exit Sub
 End If
 . . .'code
End Sub

and without Exit Sub:

Sub MyTestSub(iNumber As Integer)
 If iNumber <> 10 Then
 . . . 'code
 End If
End Sub

See Also

End Statement

Exp Function

Class

System.Math

Syntax
Math.Exp(d)
d

Use: Required

Data Type: Numeric

Any valid numeric expression

 304

Return Value

Double

Description

A Double representing the natural number e raised to the power d. Note that the irrational number e is
approximately 2.7182818.

Rules at a Glance

• The maximum value for d is 709.782712893.
• Exp is the inverse of the Log function.
• Because this function can only accept numeric values, you may want to check the value you

pass using the IsNumeric function to prevent generating an error.
• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

• In VB 6, Exp was an intrinsic VB function. In VB .NET, it is a member of the Math class in the
System namespace. Hence, in VB .NET, calls to Exp must be prefaced with the Math class
name.

See Also

Log Function, Log10 Function, E Field, Pow Function

File Class

Namespace

System.IO

Createable

No

Description

A File object represents a file. The members of the File class are listed in Public Static Methods.

The Microsoft.VisualBasic.FileSystem class has members that duplicate much of the functionality of
the File class. One significant omission from the FileSystem class is that there is no Exists method.
Consequently, the File.Exists method is documented in its own entry.

All of the methods of the File class are shared. Consequently, you don't need to instantiate a File
object to access File class methods; you can simply reference the File class itself.

Public Static Methods

 305

AppendText
Copy
Create
CreateText
Delete
Exists
GetAttributes
GetCreationTime
GetLastAccessTime
GetLastWriteTime
Move
Open
OpenRead
OpenText
OpenWrite
SetAttributes
SetCreationTime
SetLastAccessTime
SetLastWriteTime

See Also

Directory Class

File.Exists Method

Class

System.IO.File

Syntax
File.Exists(path)
path

Use: Required

Data Type: String

The file path

Return Value

A Boolean indicating whether the file exists

Description

Indicates whether a file exists

Rules at a Glance

 306

• path is a fully qualified filename or a relative path (which is interpreted as starting in the
current directory).

• The Exists method returns True only if the specified file exists; otherwise, it returns False.
Note that Exists returns False if path describes a directory instead of a folder.

Programming Tips and Gotchas

Since the File class is shared, you don't have to instantiate any objects before calling the File.Exists
method.

See Also

Directory.Exists Method

FileAttr Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileAttr(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number

Return Value

An OpenMode constant, as shown in the following table:

Mode Value
Input 1
Output 2
Random 4
Append 8
Binary 32

Description

Returns the file-access mode for a file opened using the FileOpen procedure

VB .NET/VB 6 Differences

 307

In VB 6, FileAttr includes a superfluous returntype parameter that must be set to 1 or an error
results. In VB .NET, the parameter has been eliminated.

See Also

FileOpen Procedure

FileClose Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileClose([filenumber][, filenumber][,...])
filenumber

Use: Optional

Data Type: Integer

The file number (or numbers) of an open file (or files), opened using the FileOpen procedure

Description

Closes one or more files opened with the FileOpen procedure

Rules at a Glance

• If filenumber is omitted, all open files are closed.
• If the file you are closing was opened for Output or Append, the remaining data in the I/O

buffer is written to the file. The memory buffer is then reclaimed.
• When the FileClose procedure is executed, the file number used is freed for further use.
• filenumber can either be a literal number, a numeric constant, or a numeric variable.

Programming Tips and Gotchas

• With the FileClose procedure, you can close more than one file at once by specifying the file
numbers as a comma-delimited list, as shown here:

FileClose(1, 3, 4)

• The FileClose procedure does not check first to see if there is a file associated with the given
file number. Therefore, no error occurs if you use the FileClose procedure with a nonexistent
file number. The drawback to this is that you may inadvertently think you have closed a file,
when in fact you haven't.

VB .NET/VB 6 Differences

 308

FileClose is new to VB .NET. It replaces the Close statement in VB 6.

See Also

FileOpen Procedure, Reset Procedure

FileCopy Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileCopy(source, destination)
source

Use: Required

Data Type: String

The name of the source file to be copied

destination

Use: Required

Data Type: String

The name and location of the file when copied

Return Value

None

Description

Copies a file

Rules at a Glance

• The source and destination arguments may contain a drive name and a folder name, but
they must always contain the filename.

• You cannot copy a file that is currently open.

Programming Tips and Gotchas

• If you don't specify a drive or folder in either the source or destination, the file is assumed
to be in the current drive or folder.

 309

• Unlike copying a file from one folder to another from outside VB, when using the FileCopy
procedure, it is not sufficient to simply enter a path for destination. You must supply a
filename, even if it's the same as the source; otherwise, runtime error 75, "Path/File access
error," results.

• FileCopy is a procedure and not a function; there is no return value. You therefore have to
assume that, if there are no errors generated from calling the FileCopy procedure, the file has
been successfully copied. So be sure to wrap FileCopy in robust error handling.

• Be aware that if the destination file already exists, it will be overwritten without warning.
• A number of functions allow you to use the copy operation to rename a file. (Typically, this is

done by specifying the same path in the destination as in the source, along with a different
filename.) The FileCopy procedure, however, does not work in this way.

• For the copy operation to succeed, source must not be open by another application; if it is,
runtime error 70, "Permission denied," is generated. If source has already been opened by
the application, the copy operation will still succeed if the file is not locked (i.e., has been
opened with the Shared keyword) or has been opened with a write lock only. If source has
already been opened with either a read lock or a read-write lock, the FileCopy operation will
generate runtime error 70, "Permission denied."

• destination must not be open if the copy operation is to succeed. If it has been opened by
another application, runtime error 70, "Permission denied," is generated. If it has already been
opened by the application itself, runtime error 55, "File already open," is generated.

FileDateTime Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileDateTime(pathname)
pathname

Use: Required

Data Type: String

The filename, along with an optional drive and path

Return Value

A Date containing the date and time at which the specified file was created or last modified (whichever
is later)

Description

Obtains the date and time at which a particular file was created or last modified (whichever is later)

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive or
folder.

 310

Programming Tips and Gotchas

• Use the File.Exists method (in the System.IO namespace) to determine that the file exists
before calling FileDateTime. If pathname does not exist, your application generates runtime
error 53, "File not found."

• If a file has not been modified, its creation date and last modified date will be identical.
However, if the file has been modified since its creation, the FileDateTime function only
returns the last modified date. To obtain the file's creation date, you will have to resort to using
the Window's API. The GetFileTime API call returns not only the date last modified, but the
file's creation date and last access date as well.

• You can also use FileDateTime on hidden files.

See Also

File.Exists Method

FileGet, FileGetObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileGet(FileNumber, Value, RecordNumber)

FileGetObject(FileNumber, Value, RecordNumber)
FileNumber

Use: Required

Data Type: Integer

Any valid file number

Value

Use: required

Data Type: Any (see the first two items in "Rules at a Glance")

Variable in which to place file contents

RecordNumber

Use: Optional

Data Type: Integer

The location at which reading begins

 311

Description

Copies data from a file on disk into a variable

Rules at a Glance

• For the FileGet procedure, the variable can have one of the following data types:

Array
Boolean
Byte
Char
Date
Decimal
Double
Integer
Long
Short
Single
String

• For the FileGetObject procedure, the variable must be of type Object.
• For files opened in Random mode, RecordNumber refers to the record number in the file.
• For files opened in Binary mode, RecordNumber refers to the byte number within the file.
• The number of bytes read by the FileGet procedure is governed by the data type of Value.

The following is the number of bytes read by each data type:

Data type Bytes read
Boolean 2
Byte 1
Char 1
Date 8
Decimal 8
Double 16
Integer 4
Long 8
Short 2
Single 8
String Len(string)

• Note that the number of bytes read by a String variable depends on the length of the string.
Hence, a string must be initialized to the desired size before calling the FileGet procedure.

• The position of the first record or byte within a file is always 1.
• When a record or a number of bytes is read from a file using FileGet, the file pointer

automatically moves to the record or byte following the one just read. You can therefore read
all data sequentially from a Random or Binary file by omitting RecordNumber, as this snippet
shows:

• Dim fr As Integer = FreeFile()
• Dim sChar As Char
•
• FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)
• FileGet(fr, sChar, 1)
• do while loc(fr) <> LOF(fr)

 312

• FileGet(fr, sChar)
• ' do something with sChar. . .
• Loop

FileClose(fr)

• FileGet is most commonly used to read data from files written with the FilePut function.

Example

This example illustrates the use of the Char data type to read and output each byte of a file.

Public Sub Main

Dim fr As Integer = FreeFile()
Dim sFile As String = Space(FileLen("C:\data.txt"))

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)
FileGet(fr, sFile)
Console.WriteLine(sFile) ' Displays entire file

FileClose(fr)

End Sub

Programming Tips and Gotchas

With the increase in the power, flexibility, and ease of use of modern DBMSs, the use of external
standalone data files has fallen dramatically, which means that statements such as FileGet and
FileOpen are becoming much less important.

VB .NET/VB 6 Differences

The FileGet and FileGetObject procedures are new to VB .NET. They are replacements for the Get
statement in VB 6, whose syntax is similar to that of FileGet.

See Also

FileOpen Procedure, FilePut, FilePutObject Procedures

FileLen Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileLen(pathname)
pathname

Use: Required

 313

Data Type: String

The filename, along with its path and drive name (optionally)

Return Value

A Long containing the length of the specified file in bytes

Description

Specifies the length of a file on disk

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive or
folder.

Programming Tips and Gotchas

• Use the File.Exists method in the System.IO namespace to determine that the file exists
before calling FileLen. If the file does not exist, FileLen generates runtime error 53, "File not
found."

• Because FileLen returns the length of a file based on the file allocation table, the value
returned by FileLen will reflect the size of the file before it was opened. In the case of open
files, you should instead use the LOF function to determine the open file's current length.

See Also

LOF Function

FileOpen Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileOpen(filenumber, filename, mode, access, share, recordlength)
filenumber

Use: Required

Data Type: Integer

An available file number.

filename

Use: Required

 314

Data Type: String

The name of the file to open, along with an optional path.

mode

Use: Optional

Data Type: OpenMode enum

The file-access mode. Options are: OpenMode.Append, OpenMode.Binary,
OpenMode.Input, OpenMode.Output, or OpenMode.Random (the default value).

access

Use: Optional

Data Type: OpenAccess enum

Specifies the allowable operations by the current process. Options are:
OpenAccess.Default, OpenAccess.Read, OpenAccess.ReadWrite (the default value),
or OpenAccess.Write.

share

Use: Optional

Type: OpenShare enum

Specifies the allowable operations by other processes. Options are: OpenShare.Shared (the
default value), OpenShare.LockRead, OpenShare.LockWrite, or
OpenShare.LockreadWrite.

recordlength

Use: Optional

Data Type: Integer (at most, 32767)

The length of the record (for random access) or of the I/O buffer (for sequential access).

Description

Opens a disk file for reading and/or writing

Rules at a Glance

• There are three modes of file access: sequential, binary, and random. The Input, Output, and
Append access modes are sequential access modes. Sequential access is designed for text
files consisting of individual Unicode characters (and control codes). Most of the file-
manipulation functions (LineInput, Print, PrintLine, and so on) apply to files opened for
sequential access. Random access is designed to be used with files that have a structure—
more specifically, files that consist of records, each of which is made up of the same set of
fields. For instance, a record might contain name, address, and social security number fields.

 315

The binary access mode is for binary access, where each byte in the file is accessible
independently.

• filename may include the directory or folder and drive; if these are omitted, the file is
assumed to reside in the current working directory. If filename does include drive and path
information, this may take the form of a path relative to the local system or a UNC path.

• The default mode for opening a disk file (when mode is not specified) is OpenMode.Random.
• If the specified file does not exist when opening in Input mode, an error occurs.
• A new file is created if the specified file does not exist when opening in Append, Binary,

Output, or Random mode.
• access allows you to restrict the actions that can be taken against the file in the current

process, by specifying Read, Write, or ReadWrite. The default is
OpenAccess.ReadWrite.

• The share argument allows you to restrict the operations performed on the open file by other
processes, and accepts one of the following members of the OpenShare enumeration:

Lock type Description
Shared Other processes can open the file for both read and write operations.
LockRead Other processes can only write to the file.
LockWrite Other processes can only read from the file.
LockReadWrite Other processes cannot open the file.

• The recordlength argument is treated differently, depending upon the open mode, as the
following table shows:

Open mode Meaning of Len=
Random Length in bytes of each record
Binary Ignored
Append/Input/Output The number of characters to buffer

Example

The following example opens a random access data file, adds two records, and then retrieves the
second record:

Module modMain

Structure Person
 <vbFixedString(10)> Public Name As String
 Public Age As Short
End Structure

Public Sub Main

Dim APerson As New Person()
Dim fr As Integer = FreeFile()

FileOpen(fr, "c:\data.txt", OpenMode.Random, _
 OpenAccess.ReadWrite, OpenShare.Default, len(APerson))

APerson.Name = "Donna"
APerson.Age = 20
FilePut(fr, APerson, 1)

APerson.Name = "Steve"
APerson.Age = 30

 316

FilePut(fr, APerson, 2)

FileGet(fr, APerson, 2)
MsgBox(APerson.Age)
FileClose(fr)

End Sub

End Module

Since random access files require a fixed record length, note the use of the
<vbFixedString(length)> attribute to insure that the Name field is a constant size.

Programming Tips and Gotchas

• To avoid using the file number of an already open file and generating an error, use the
FreeFile function to allocate the next available file number.

• You can open an already opened file using a different file number in Binary, Input, and
Random modes. However, you must close a file opened using Append or Output before you
can open it with a different file number.

VB .NET/VB 6 Differences

The FileOpen procedure is new to VB .NET. It is a more or less direct replacement for the VB 6 Open
statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FilePut, FilePutObject Procedures

FilePut, FilePutObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax
FilePut(filenumber, value, [recordnumber])

FilePutObject(filenumber, value, [recordnumber])
filenumber

Use: Required

Data Type: Integer

Any valid file number

value

Use: Required

 317

Data Type: Any (see the first item in "Rules at a Glance")

The name of the variable containing the data to be written to the file

recordnumber

Use: Optional

Data Type: Integer

Record number (for random access) or byte number (for binary access) at which to begin the
write operation

Description

Writes data from a program variable to a disk file

Rules at a Glance

• The value argument of the FilePut procedure can be any data type except Object. The
value argument of the FilePutObject procedure must be of type Object.

• If filenumber is opened in random access mode, recordnumber refers to the record
number; if the file is opened in binary access mode, recordnumber refers to a byte number.

• Both bytes and records in a file are numbered starting with 1.
• If recordnumber is omitted, the next byte or record to be written will be placed at the position

immediately after the position pointed to by the last FileGet or FilePut procedure, or by the last
Seek function.

• If you have opened the file in Random mode, it is important to ensure that the record length
specified in the recordNumber argument of the FileOpen procedure matches the actual
length of the data being written. If the length of the data being written is less than that
specified by the recordNumber argument, the space up to the end of the record will be
padded with the current contents of the file buffer—whatever that may be. If, on the other hand,
the actual data length is more than that specified, an error occurs.

• The FilePut procedure cannot be used to write objects to disk. The FilePutObject procedure is
used for this purpose.

• If you open the file in Binary mode, the RecordNumber argument has no effect. When you
use FilePut to write data to the disk, the data is written contiguously, and no padding is placed
between records.

Example

The following code writes the letters A-Z to a file:

Dim fr As Integer = FreeFile()
Dim sChar As Char
Dim i As Integer
FileOpen(fr, "c:\data2.txt", OpenMode.Binary)

For i = Asc("A") To Asc("Z")
 sChar = Chr(i)
 FilePut(fr, sChar)
 Next

FileClose(fr)

Programming Tips and Gotchas

 318

• Because of the structured format of data written with the FilePut procedure, it is customary to
read the data back from the file using the FileGet procedure.

• The FilePutObject procedure can be used to write data of type Object whose subtype is one of
the standard datatypes (Boolean, Byte, Char, etc.). It cannot be used to write object data
defined by the Class...End Class construct (including classes residing in .NET libraries),
nor can it be used to write data from COM objects to disk. The following is a rewritten version
of the example code that uses FilePutObject:

• Dim fr As Integer = FreeFile()
• Dim oChar As Object
• Dim i As Integer
• FileOpen(fr, "c:\data2.txt", OpenMode.Binary)
•
• For i = Asc("A") To Asc("D")
• oChar = Chr(i)
• FilePutObject(fr, oChar)
• Next

FileClose(fr)

• If you use the FilePut procedure to write data, you can use the FileGet procedure to read it.
Similarly, if you use the FilePutObject procedure, you should should the FileGetObject
procedure.

VB .NET/VB 6 Differences

The FilePut and FilePutObject procedures are new to VB .NET. They are almost direct replacements
for the VB 6 Put statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FileOpen Procedure

FileWidth Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
FileWidth(filenumber, recordwidth)
filenumber

Use: Required

Data Type: Integer

Any valid file number

recordwidth

Use: Required

 319

Data Type: Numeric

A number between 0 and 255

Description

Specifies a virtual file width when working with files opened with the FileOpen function

Rules at a Glance

• recordwidth defines the number of characters that can be placed on a single output line.
• The default recordwidth of 0 denotes that there is no limit to the number of characters that

can be placed on a single output line.

VB .NET/VB 6 Differences

The FileWidth procedure is new to VB .NET.

See Also

FileOpen Procedure

Filter Function

Class

Microsoft.VisualBasic.Strings

Syntax
Filter(Source, Match[, Include[, Compare]])
Source

Use: Required

Data Type: String or Object

An array containing values to be filtered.

Match

Use: Required

Data Type: String

The substring of characters to find in the elements of the source array.

Include

Use: Optional

 320

Data Type: Boolean

A Boolean (True or False) value. If True (the default value), Filter includes all matching
values in the returned array; if False, Filter excludes all matching values (or, to put it another
way, includes all nonmatching values).

Compare

Use: Optional

Type: CompareMethod enumeration

A constant whose value can be CompareMethod.Text or CompareMethod.Binary (the
default).

Return Value

A 0-based String array of the elements filtered from Source

Description

The Filter function produces an array of matching values from an array of source values that either
match or do not match a given filter string.

Put another way, individual elements are copied from a source array to a target array if they either
match (Include is True) or do not match (Include is False) a filter string.A match occurs for an
array element if Match is a substring of the array element.

Rules at a Glance

• The default Include value is True.
• The default Compare value is CompareMethod.Binary.
• CompareMethod.Binary is case sensitive; that is, Filter matches both character and case.

In contrast, CompareMethod.Text is case insensitive, matching only character regardless of
case.

• If no matches are found, Filter returns an empty array.

Programming Tips and Gotchas

• Although the Filter function is primarily a string function, you can also filter numeric values. To
do this, specify a Source of type Object and populate this array with numeric values. Then
assign the string representation of the numeric value you wish to filter on to the Match
parameter. Note, though, that the returned string contains string representations of the filtered
numbers. For example:

• Dim oArray() As Object = _
• {123,222,444,139,1,12,98,908,845,22,3,9,11}
•

Dim sResult() As String = Filter(oArray, "1")

In this case, the resulting array contains five elements: 123, 139, 1, 12, and 11.

Example
Dim sKeys() As String = {"Microsoft Corp.", "AnyMicro Inc.", _

 321

 "Landbor Data", "Micron Co."}
Dim sMatch As String = "micro"
Dim blnInclude As Boolean = True
Dim sFiltered() As String = Filter(sKeys, sMatch, blnInclude, _
 CompareMethod.Text)
Dim sElement As String

For Each sElement In sFiltered
 Console.WriteLine(sElement)
Next

Fix Function

Class

Microsoft.VisualBasic.Conversion

Syntax
Fix(number)
number

Use: Required

Data Type: Double or any numeric expression

A number whose integer portion is to be returned

Return Value

A number of the same data type as number whose value is the integer portion of number

Description

For nonnegative numbers, Fix returns the floor of the number (the largest integer less than or equal to
number).

For negative numbers, Fix returns the ceiling of the number (the smallest integer greater than or equal
to number).

Rules at a Glance

• If number is Nothing, Fix returns Nothing.
• The operation of Int and Fix are identical when dealing with positive numbers: numbers are

rounded down to the next lowest whole number. For example, both Int(3.14) and
Fix(3.14) return 3.

• If number is negative, Fix removes its fractional part, thereby returning the next greater whole
number. For example, Fix(-3.667) returns -3. This contrasts with Int, which returns the
negative integer less than or equal to number (or -4, in the case of our example).

• The function returns the same data type as was passed to it.

Example

 322

Sub TestFix()

 Dim dblTest As Double
 Dim objTest As Object

 dblTest = -100.9353
 objTest = Fix(dblTest)
 ' returns -100
 Console.WriteLine(objTest & " " & TypeName(objTest))

 dblTest = 100.9353
 objTest = Fix(dblTest)
 'returns 100
 Console.WriteLine(objTest & " " & TypeName(objTest))

End Sub

Programming Tips and Gotchas

Fix does not round number to the nearest whole number; it simply removes the fractional part of
number. Therefore, the integer returned by Fix will be the nearest whole number less than (or greater
than, if the number is negative) the number passed to the function.

See Also

Int Function, Round Function

Floor Function

Class

System.Math

Syntax
Math.Floor(d)
d

Use: Required

Data Type: Double

Return Value

Returns a Double containing the largest integer less than or equal to the argument d.

Description

Returns the largest integer less than or equal to the argument d.

Example

 323

Math.Floor(12.9) ' Returns 12
Math.Floor(-12.1) ' Returns -13

Rules at a Glance

• Because this function can only accept numeric values, you may want to check the value you
pass using the IsNumeric function to prevent generating an error.

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Floor function is new to the .NET Framework.

See Also

Ceiling Function

FontDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a font.

The FontDialog object has properties for setting the initial appearance and functionality of the dialog
box, a property for returning the font selected by the user, as well as a method for showing the dialog
box.

Selected FontDialog Members

The following provides a brief description of the more important members of the FontDialog class:

Color property

Sets or retrieves the color of the font. The return value is an instance of the Color structure.
The Color structure has a number of members, among which are:

• Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip,
MistyRose, and MediumSeagreen. These properties return a Color structure.

• A Name property, which returns the name of the color or its ARGB value for custom
colors. (The A component is the alpha component of the color, which determines the
color's opacity.)

 324

• The R property, G property, and B property, which return a byte specifying the red,
green, or blue color component of the RGB color value, respectively.

• The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give
information about the color. Please see the documentation for more information on
these properties.

Font property

Sets or retrieves the font chosen by the user. The return value is an instance of the Font class
in the System.Drawing namespace. The Font class has a number of members, among which
are:

Bold, Italic, Strikout, Underline properties

Boolean properties used to set or retrieve the corresponding attribute of the font.

FontFamily property

Returns a FontFamily object associated with the font. Use the Name property to get the
name of the font family.

Name property

Returns the face name of the font as a String.

SizeInPoints

Returns the size of the font, in points, as a Single.

Style

Returns a FontStyle constant that contains information about the style of the font. The
FontStyle constants are Bold, Italic, Regular, Strikeout, and Underline, and they can be
combined using bitwise operations.

MaxSize, MinSize properties

These are properties of type Integer that specify the maximum and minimum sizes that can be
entered into the Font dialog box.

Show... properties

The FontDialog has properties that specify the features of the dialog box. These include:

ShowApply

Indicates whether the dialog box has an Apply button. (The default is False.)

ShowColor

Indicates whether the dialog box shows the font color choice controls. (The default is False.)

ShowEffects

 325

Indicates whether the dialog box shows the strikethrough and underline options. (The default
is True.)

Example

The following code displays the Font dialog box and then displays the user's choice of font family:

Imports Microsoft.VisualBasic
Imports System
Imports System.Windows.Forms
Imports System.Drawing

Module modMain

Public Sub Main

Dim fn As New FontDialog()
fn.ShowEffects = True
fn.ShowDialog()
MsgBox(fn.Font.FontFamily.Name)

End Sub

End Module

VB .NET/VB 6 Differences

While the FontDialog class is implemented in the .NET Base Class Library, VB 6 offers the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

For...Next Statement

Syntax
For counter = initial_value To maximum_value _
 [Step stepcounter]
 '
code to execute on each iteration

 [Exit For]
Next [counter]
counter

Use: Required (Optional with Next statement)

Data Type: Any valid numeric variable

A variable that serves as the loop counter

initial_value

Use: Required

 326

Data Type: Any valid numeric expression

The starting value of counter for the first iteration of the loop

maximum_value

Use: Required

Data Type: Any valid numeric expression

The value of counter during the last iteration of the loop

stepcounter

Use: Optional (Required if Step is used)

Data Type: Any valid numeric expression

The amount by which counter is to be incremented or decremented on each iteration of the
loop

Description

Defines a loop that executes a given number of times, as determined by a loop counter.

To use the For...Next loop, you must assign a numeric value to a counter variable. This counter is
either incremented or decremented automatically with each iteration of the loop. In the For statement,
you specify the value that is to be assigned to the counter initially and the maximum value the counter
will reach for the block of code to be executed. The Next statement marks the end of the block of
code that is to execute repeatedly, and it also serves as a kind of flag that indicates that the counter
variable is to be modified.

Rules at a Glance

• If maximum_value is greater than initial_value and no Step keyword is used or the
step counter is positive, the For...Next loop is ignored and execution commences with the
first line of code immediately following the Next statement.

• If initial_value and maximum_value are equal and stepcounter is 1, the loop will
execute once.

• counter cannot be a Boolean variable or an array element.
• counter is incremented by one with each iteration unless the Step keyword is used.
• The For...Next loop can contain any number of Exit For statements. When the Exit For

statement is executed, program execution commences with the first line of code immediately
following the Next statement.

• If the Step keyword is used, stepcounter specifies the amount counter is incremented (if
stepcounter is positive) or decremented (if it is negative).

Example

The following example demonstrates the use of a For...Next statement to iterate through the items
in a combo box until an item in the combo box list matches a particular value entered in a text box:

Dim sSought As String = txtSeek.Text
Dim i As Integer

 327

Dim iCount As Integer = cboCombo.Items.Count
For i = 0 To iCount - 1
 If cboCombo.Items(i) = sSought Then
 cboCombo.SelectedIndex = i
 Exit For
 End If
Next i

The following example demonstrates how to iterate from the end to the start of an array of values:

For i = UBound(sArray) to LBound(sArray) Step - 1
 Debug.WriteLine(sArray(i))
Next i

The following example demonstrates how to select only every other value from an array of values:

For i = LBound(sArray) to UBound(sArray) Step 2
 Debug.WriteLine(sArray(i))
Next i

Programming Tips and Gotchas

• You can also nest For...Next loops, as shown here:
• For iDay = 1 to 365
• For iHour = 1 to 23
• For iMinute = 1 to 59
• ...
• Next iMinute
• Next iHour

Next iDay

• Although the counter following the Next keyword is optional, you will find your code is much
easier to read if you use it, especially when nesting For...Next loops.

• You should avoid changing the value of counter in the code within the loop. Not only can this
lead to unexpected results; it makes for code that's incredibly difficult to read and to
understand.

• Once the loop has finished executing, the value of counter is officially undefined. That is,
you should not make any assumptions about its value outside of the For...Next loop, and
you should not use it unless you first reinitialize it.

See Also

For Each...Next Statement

For Each...Next Statement

Syntax
For Each element In group
[statements]
[Exit For]
[statements]

 328

Next [element]
element

Use: Required

Data Type: Object or any user-defined object type

An object variable to which the current element from the group is assigned

group

Use: Required

An object collection or array

statements

Use: Optional

A line or lines of program code to execute within the loop

Description

Loops through the items of a collection or the elements of an array

Rules at a Glance

• The For Each...Next code block is executed only if group contains at least one element. If
group is an empty collection or an array that has not yet been dimensioned, an error (runtime
errors 92, "For loop not initialized," and 424, "Object required," respectively, or a
NullReferenceException exception) results.

• All statements are executed for each element in group in turn until either there are no
more elements in group or the loop is exited prematurely using the Exit For statement.
Program execution then continues with the line of code following Next.

• For Each...Next loops can be nested, but each element must be unique. For example:
• For Each myObj In AnObject
• For Each subObject In myObj
• SName = subObject.NameProperty
• Next

Next

uses a nested For Each...Next loop, but two different variables, myObj and subObject,
represent element.

• Any number of Exit For statements can be placed within the For Each...Next loop to
allow for premature, conditional exit of the loop. Once the loop is exited, execution of the
program continues with the line immediately following the Next statement. For example, the
following loop terminates once the program finds a name in the myObj collection that has
fewer than ten characters:

• For Each subObject In myObj
• SName = subObject.NameProperty
• If Len(Sname) < 10 then
• Exit For
• End if

 329

Next

Programming Tips and Gotchas

• Because the elements of an array are assigned to element by value, element is a "local"
copy of the array element and not a reference to the array element itself. This means that you
cannot make changes to the array elements, as the following example demonstrates:

• Dim sArray(2) As String
• Dim ele As String
•
• sArray (0) = "aa"
• sArray (1) = "bb"
•
• For Each ele In sArray
• ele = "xx"
• Debug.WriteLine(ele)
• Next
•
• For Each ele In sArray
• Debug.WriteLine(ele)

Next

The output is:

xx
xx
aa
bb

which shows that the original array has not been changed.

VB .NET/VB 6 Differences

In VB 6, element had to be a variable of type Variant. VB .NET removes this restriction; element
can be a strongly typed data type, as well as a variable of type Object, VB .NET's "universal" data type.

See Also

For...Next Statement

Format Function

Class

Microsoft.VisualBasic.Strings

Syntax
Format(expression[, style[, dayofweek[, _
 weekofyear]]])
expression

 330

Use: Required

Data Type: String/Numeric

Any valid string or numeric expression

style

Use: Optional

Data Type: String

A valid named or user-defined format expression

dayofweek

Use: Optional

Data Type: FirstDayOfWeek enumeration

A constant that specifies the first day of the week

weekofyear

Use: Optional

Data Type: FirstWeekOfYear enumeration

A constant that specifies the first week of the year

First Day of Week Constants
Constant Value Description

System 0 NLS API setting
Sunday 1 Sunday (default)
Monday 2 Monday
Tuesday 3 Tuesday
Wednesday 4 Wednesday
Thursday 5 Thursday
Friday 6 Friday
Saturday 7 Saturday

First Week of Year Constants
Constant Value Description

UseSystemDayOfWeek 0 Use the NLS API setting.
FirstJan1 1 Start with the week in which January 1 occurs (default).
FirstFourDays 2 Start with the first week that has at least four days in the new year.
FirstFullWeek 3 Start with first full week of the year.

Return Value

A string containing the formatted expression

 331

Description

Allows you to use either predefined or user-defined formats to output string, numeric, and date/time
data.

Rules at a Glance

• style can be either a predefined or user-defined format.
• User-defined formats for numeric values are created with up to four sections, delimited by

semicolons. Each section is used for a different type of numeric value. The four possible
sections are shown in the following table:

Section Applies to
1 All values if used alone; positive values if used with more than one section
2 Negative values
3 Zero values
4 Nothing value

• It is not necessary to include all four sections in the style clause. However, the number of
sections present determines what types of numeric values each section defines, as the
following table shows:

Number of sections Applies to
1 All numeric values
2 Positive and zero values; negative values
3 Positive values; negative values; zero values
4 As shown in previous table

• If you leave a section blank, it will use the same format as that defined for positive values. For
example, the format string:

"#.00;;#,##"

means that negative values will appear in the same format as positive values.

• Only one section is allowed where one of the named formats is used.
• User-defined formats for string values can have two sections. The first is for all values; the

second applies only to Null values or zero-length strings.
• The predefined date and time formats are:

General Date

Example: Format("01/06/98","General Date")

Returns: 1/6/98

Long Date

Example: Format("01/06/98","Long Date")

Returns: Tuesday, January 06, 1998

 332

Medium Date

Example: Format("01/06/98","Medium Date")

Returns: 06-Jan-98

Short Date

Example: Format("01/06/98","Short Date")

Returns: 1/6/98

Long Time

Example: Format("17:08:06","Long Time")

Returns: 5:08:06 PM

Medium Time

Example: Format("17:08:06","Medium Time")

Returns: 05:08 PM

Short Time

Example: Format("17:08:06","Short Time")

Returns: 17:08

• The predefined numeric formats are:

General Number

Example: Format(562486.2356, "General Number")

Returns: 562486.2356

Currency

Example: Format(562486.2356, "Currency")

Returns: $562,486.24

Fixed

Example: Format(0.2, "Fixed")

Returns: 0.20

Standard

Example: Format(562486.2356, "Standard")

 333

Returns: 562,486.24

Percent

Example: Format(.7521, "Percent")

Returns: 75.21%

Scientific

Example: Format(562486.2356, "Scientific")

Returns: 5.62E+05

Yes/No

Example #1: Format(0,"Yes/No")

Returns: No

Example #2: Format(23,"Yes/No")

Returns: Yes

True/False

Example #1: Format(0,"True/False")

Returns: False

Example #2: Format(23,"True/False")

Returns: True

On/Off

Example #1: Format(0,"On/Off")

Returns: Off

Example #2: Format(23,"On/Off")

Returns: On

• Characters used to create user-defined date and time formats are:

c

Element: Date

Display as: A date and/or time based on the short-date and short-time international settings of
the current Windows system

Example: Format("01/06/98 17:08:06", "c")

 334

Returns: 1/6/98 5:08:06 PM

dddddd

Element: Date

Display as: A complete date based on the long-date international setting of the current
Windows system

Example: Format("01/06/98", "dddddd")

Returns: Tuesday, January 06, 1998

(/)

Element: Date separator

Display as: A date delimited with the specified character

Example: Format("01/06/98", "mm-dd-yyyy")

Returns: 01-06-1998

d

Element: Day

Display as: A number (1-31) without a leading zero

Example: Format("01/06/98", "d")

Returns: 6

dd

Element: Day

Display as: A number (01-31) with a leading zero

Example: Format("01/06/98", "dd")

Returns: 06

ddd

Element: Day

Display as: An abbreviation (Sun-Sat)

Example: Format("01/06/98", "ddd")

Returns: Tue

dddd

 335

Element: Day

Display as: A full name (Sunday-Saturday)

Example: Format("01/06/98", "dddd")

Returns: Tuesday

ddddd

Element: Date

Display as: A date based on the short date section in the computer's Windows international
settings

Example: Format("01/06/98", "ddddd")

Returns: 1/6/98

h

Element: Hour

Display as: A number (0-23) without leading zeros

Example: Format("05:08:06", "h")

Returns: 5

hh

Element: Hour

Display as: A number (00-23) with leading zeros

Example: Format("05:08:06", "hh")

Returns: 05

n

Element: Minute

Display as: A number (0-59) without leading zeros

Example: Format("05:08:06", "n")

Returns: 8

nn

Element: Minute

Display as: A number (00-59) with leading zeros

 336

Example: Format("05:08:06", "nn")

Returns: 08

m

Element: Month

Display as: A number (1-12) without a leading zero

Example: Format("01/06/98", "m")

Returns: 1

mm

Element: Month

Display as: A number (01-12) with a leading zero

Example: Format("01/06/98", "mm")

Returns: 01

mmm

Element: Month

Display as: An abbreviation (Jan-Dec)

Example: Format("01/06/98", "mmm")

Returns: Jan

mmmm

Element: Month

Display as: A full month name (January-December)

Example: Format("01/06/98", "mmmm")

Returns: January

q

Element: Quarter

Display as: A number (1-4)

Example: Format("01/06/98", "q")

Returns: 1

 337

s

Element: Second

Display as: A number (0-59) without leading zeros

Example: Format("05:08:06", "s")

Returns: 6

ss

Element: Second

Display as: A number (00-59) with leading zeros

Example: Format("05:08:06", "ss")

Returns: 06

ttttt

Element: Time

Display as: A time based on the 12-hour clock, using the time separator and leading zeros
specified in Windows locale settings

Example: Format("05:08:06", "ttttt")

Returns: 5:08:06 AM

AM/PM

Element: Time

Display as: A 12-hour clock format using uppercase AM and PM

Example: Format("17:08:06", "hh:mm:ss AM/PM")

Returns: 05:08:06 PM

am/pm

Element: Time

Display as: A 12-hour clock format using lowercase am and pm

Example: Format("17:08:06", "hh:mm:ss am/pm")

Returns: 05:08:06 pm

A/P

Element: Time

 338

Display as: A 12-hour clock format using an uppercase "A" for AM and "P" for PM

Example: Format("17:08:06", "hh:mm:ss A/P")

Returns: 05:08:06 P

a/p

Element: Time

Display as: A 12-hour clock format using a lowercase "a" for AM and "p" for PM

Example: Format("17:08:06", "hh:mm:ss a/p")

Returns: 05:08:06 p

(:)

Element: Time separator

Display as: A time format using a nonstandard character

Example: Format("17:08:06", "hh::mm::ss")

Returns: 17::08::06

ww

Element: Week

Display as: A number (1 - 54)

Example: Format("01/06/98", "ww")

Returns: 2

w

Element: Weekday

Display as: A number (1 for Sunday through 7 for Saturday)

Example: Format("01/06/98", "w")

Returns: 3

y

Element: Day of Year

Display as: A number (1 - 366)

Example: Format("01/06/98", "y")

 339

Returns: 6

yy

Element: Year

Display as: A 2-digit number (00 - 99)

Example: Format("01/06/98", "yy")

Returns: 98

yyyy

Element: Year

Display as: A 4-digit number (100 - 9999)

Example: Format("01/06/98", "yyyy")

Returns: 1998

• Characters used to create user-defined number formats are as follows:

(0)

Description: Digit placeholder. If expression contains a digit in the appropriate position, the
digit is displayed; otherwise, a 0 will be displayed. The format definition dictates the number of
digits after the decimal point, forcing the number held within an expression to be rounded to
the given number of decimal places. It does not, however, affect the number of digits shown to
the left of the decimal point.

Example #1: Format(23.675, "00.0000") returns 23.6750

Example #2: Format(23.675, "00.00") returns23.68

Example #3: Format(2658, "00000") returns 02658

Example #4: Format(2658, "00.00") returns 2658.00

(#)

Description: Digit placeholder. If expression contains a digit in the appropriate position, the
digit is displayed; otherwise, nothing will be displayed.

Example #1: Format(23.675, "##.##") returns 23.68

Example #2: Format(23.675, "##.####") returns 23.675

Example #3: Format(12345.25, "#,###.##") returns 12,345.25

(.)

 340

Description: Decimal placeholder. The actual character displayed as a decimal placeholder
depends on the international settings of the local Windows system.

(%)

Description: Percentage placeholder. Displays expression as a percentage by first
multiplying the value of expression by 100.

Example: Format(0.25, "##.00%") returns 25.00%

(,)

Description: Thousands separator. The actual character displayed as a thousands separator
depends on the international settings of the local Windows system. You only need to show
one thousands separator in your definition.

Example: Format(1000000, "#,###") returns 1,000,000

(E- E+ e- e+)

Description: Scientific format. If the format expression contains at least one digit placeholder
(0 or #) to the right of E-, E+, e-, or e+, the number is displayed in scientific format, and the
letter E or e that was used in the format expression is inserted between the number and its
exponent. The number of digit placeholders to the right determines the number of digits
displayed in the exponent. Use E- or e- to place a minus sign next to negative exponents.
Use E+ or e+ to place a minus sign next to negative exponents and a plus sign next to positive
exponents.

- + $ ()

Description: Displays a literal character.

Example: Format(2345.25, "$#,###.##") returns $2,345.25

(\)

Description: The character following the backslash will be displayed as a literal character. Use
the backslash to display a special formatting character as a literal.

Example: Format(0.25, "##.00\%") returns .25%

Note: Note the difference between the result of this example and the result of the % formatting
character.

Programming Tips and Gotchas

• A little known and very important use of the Format function is to prevent an "Invalid Use of
Null" error from occurring when assigning values from a recordset to a variable within your
program. For example, if a field within either a DAO or RDO recordset created from either an
Access or SQL Server database contains a Null value, you could trap this and change its
value to "" as follows:

• If IsNull(rsMyRecordSet!myValue) Then
• sMyString = ""
• Else
• sMyString = rsMyRecordSet!myValue

 341

End If

However, assigning the value returned by the Format function that has been passed the
recordset field can do away with this long and tedious coding, as the following line of code
illustrates:

sMyString = Format(rsMyRecordSet!myValue)

• If you are passing a date to SQL Server, what date format should you use? By default, SQL
Server expects an American date format, mmddyy, but it is possible for the database to have
been altered to accept other date formats, or you could be passing data to a stored procedure
that begins with a date-time conversion statement (SET DATEFORMAT dateformat). The only
sure way of passing a date into SQL Server is by using the ANSI standard date format
'yyyymmdd' (including the single quotation marks).

• When passing a date to a Jet (Access) database, you should surround the date with hash
characters (#); for example, #12/31/1999#.

• Formatting numbers using Format without a format definition is also preferable to simply using
the Str function. Unlike Str, the Format function removes the leading space normally reserved
for the sign from positive numbers.

• You can also use the Format function to scale numbers by 1000. This is achieved by placing a
thousands separator to the immediate left of the decimal point for each 1000 you wish the
number to be scaled by. Thus:

• 'one separator divides the expression by 1000 = 1000
• Format(1000000, "##0,.")
• 'two separators divides the expression by 1,000,000 = 1

Format(1000000, "##0,,.")

VB .NET/VB 6 Differences

The VB 6 version of the Format function defined five special symbols (@, &, <, >, and !) for creating
user-defined string formats. In beta 2 of VB .NET, these symbols are treated as literal characters.

See Also

FormatCurrency, FormatNumber, FormatPercent Functions, FormatDateTime Function

FormatCurrency, FormatNumber, FormatPercent
Functions

Class

Microsoft. VisualBasic. Strings

Syntax
FormatCurrency(expression[,NumDigitsAfterDecimal][, _
 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _
 GroupDigits]]]])

FormatNumber(expression[,NumDigitsAfterDecimal][, _
 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _
 GroupDigits]]]])

 342

FormatPercent(expression[,NumDigitsAfterDecimal][, _
 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _
 GroupDigits]]]])
expression

Use: Required

Data Type: Object

The number or numeric expression to be formatted.

NumDigitsAfterDecimal

Use: Optional

Data Type: Long

The number of digits the formatted string should contain after the decimal point.

IncludeLeadingDigit

Use: Optional

Data Type: TriState constant

Indicates whether the formatted string is to have a 0 before floating point numbers between 1
and -1.

UseParensForNegativeNumbers

Use: Optional

Data Type: TriState constant

Specifies whether parentheses should be placed around negative numbers.

GroupDigits

Use: Optional

Data Type: TriState constant

Determines whether digits in the returned string should be grouped using the delimiter
specified in the computer's regional settings. For example, on English language systems, the
value 1000000 is returned as 1,000,000 if GroupDigits is True.

Return Value

String

Description

Functions used to format currency, numbers, and percentages.

 343

The three functions are almost identical. They all take identical arguments. The only difference is that
FormatCurrency returns a formatted number beginning with the currency symbol specified in the
computer's regional settings, FormatNumber returns just the formatted number, and FormatPercent
returns the formatted number followed by a percentage sign (%).

Rules at a Glance

• If NumDigitsAfterDecimal is not specified, its default value is -1, which means that the
value in the computer's regional settings is used.

• The TriState constant values are True, False, and UseDefault.
• When optional arguments are omitted, their values are defined by the computer's regional

settings.
• In the FormatCurrency function, the position of the currency symbol in relation to the currency

value is defined by the computer's regional settings.

Programming Tips and Gotchas

These three functions first appeared in VBScript Version 2 as "light" alternatives to the Format function,
which had originally been left out of VBScript due to its size. They are quick and easy to use and make
your code more self-documenting; you can instantly see what format is being applied to a number
without having to decipher the format string.

See Also

Format Function, FormatDateTime Function

FormatDateTime Function

Class

Microsoft.VisualBasic.Strings

Syntax
FormatDateTime(expression[,dateformat])
expression

Use: Required

Data Type: Date

Date variable or literal date

dateformat

Use: Optional

Data Type: DateFormat enum

Defines the format of the date to return

 344

Return Value

String representing the formatted date or time

Description

Formats a date or time expression based on the computer's regional settings

Rules at a Glance

• The Dateformat enum is:

DateFormat.GeneralDate

Value: 0

Displays a date and/or time. If there is a date part, displays it as a short date. If there is a time
part, displays it as a long time. If present, both parts are displayed.

DateFormat.LongDate

Value: 1

Uses the long-date format specified in the client computer's regional settings.

DateFormat.ShortDate

Value: 2

Uses the short-date format specified in the client computer's regional settings.

DateFormat.LongTime

Value: 3

Uses the time format specified in the computer's regional settings.

DateFormat.ShortTime

Value: 4

Uses a 24-hour format (hh:mm).

• The default date format is GeneralDate.

Programming Tips and Gotchas

• Remember that date and time formats obtained from the client computer are based upon the
client computer's regional settings. It is not uncommon for a single application to be used
internationally, so date formats can vary widely. Not only that, but you can never be sure that
a user has not modified the regional settings on her computer. In short, never take a date
coming in from a client machine for granted; ideally, you should always verify that it is in the
format you need prior to using it.

 345

• There is no appreciable difference in either coding or performance between these two
statements:

• sDate = FormatDateTime(dDate, LongDate)
sDate = Format(dDate, "Long Date")

See Also

Format Function, FormatCurrency, FormatNumber, FormatPercent Functions

FreeFile Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
FreeFile()

Return Value

An integer representing the next available file number

Description

Returns the next available file number for use in a FileOpen function

Programming Tips and Gotchas

• It is good programming practice to always use FreeFile to obtain a file number to use in the
FileOpen procedure.

• You should call FreeFile and store the returned file number to a variable rather than passing
the FreeFile function directly as the filenumber argument of the FileOpen procedure. In this
way, you save the file handle for a subsequent call to the FileClose procedure.

• After using the FreeFile function to retrieve a file handle, you should immediately call the
FileOpen procedure, particularly if your file access code resides in a multithreaded application
or component. Failure to do so may cause the same handle to be assigned to two different
variables, so that one of the calls to FileOpen fails.

Friend Keyword

Description

The Friend keyword is used to declare classes, module-level variables (but not local variables),
constants, enumerations, properties, methods, functions, and subroutines.

 346

When the Friend keyword is used, the item being declared has direct access scope inside of the
class module in which the item is declared, as well as in all derived classes in the same project.
However, if the item is declared using Protected Friend, then the scope is all derived classes,
including those that are in other projects.

For more information on access modifiers, including Friend, see the following topics, as well as
Chapter 3:

Class Statement
Const Statement
Enum Statement
Function Statement
Property Statement
Sub Statement

Function Statement

Syntax
[ClassBehavior][AccessModifier] Function name _
 [(arglist)] [As type][()]
 [statements]
 [name = expression]
 [statements]
End Function
ClassBehavior

Use: Optional

Type: Keyword

One of the following keywords:

Overloads

Indicates that more than one declaration of this function exists (with different argument
signatures). For more detail, see Chapter 3.

Overrides

For derived classes, indicates that the function overrides the function by the same name (and
argument signature) in the base class. For more detail, see Chapter 3.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see Chapter
3.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail, see
Chapter 3.

 347

MustOverride

Indicates that the function must be overridden in a derived class. For more detail, see
Chapter 3.

Shadows

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation.

Shared

A shared function is callable without creating an object of the class. It is, in this strange sense,
shared by all objects of the class. These are also called static functions.

AccessModifier

Use: Optional

Type: Keyword

One of the following keywords: Public, Private, Protected, Friend, Protected
Friend. The upcoming table describes the effects of the various access modifiers. Note that
direct access refers to accessing the member without any qualification, as in:

classvariable = 100

and class/object access refers to accessing the member through qualification, either with the
class name or the name of an object of that class.

 Direct access scope Class/object access scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

For more information, see Section 3.7 in Chapter 3.

name

Use: Required

Type: String literal

The name of the function.

arglist

Use: Optional

A comma-delimited list of variables to be passed to the function as arguments from the calling
procedure.

 348

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()]
 [As type] _
 [= defaultvalue]

Optional

Use: Optional

Type: Keyword

An optional argument is one that need not be supplied when calling the function. However, all
arguments following an optional one must also be optional. A ParamArray argument cannot
be optional.

ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, the local copy of the variable is assigned the value
of the argument.

ByRef

Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable will be also reflected in the
calling argument. ByVal is the default method of passing variables.

ParamArray

Use: Optional

Type: Keyword

Indicates that the argument is an optional array of Objects containing an arbitrary number of
elements. It can only be used as the last element of the argument list, and it cannot be used
with the ByRef, ByVal, or Optional keywords.

varname

Use: Required

Type: String literal

The name of the local variable containing either the reference or value of the argument.

type

Use: Optional

 349

Type: Keyword

The data type of the argument.

defaultvalue

Use: Optional

Type: String literal

For optional arguments, you must specify a default value.

type

Use: Optional

Type: Keyword

The return data type of the function.

statements

Use: Optional

Program code to be executed within the function.

expression

Use: Optional

The value to return from the function to the calling procedure.

Description

Defines a function procedure

Rules at a Glance

• Functions cannot be nested, that is, you cannot define one function inside another function.
(This applies to all procedures.)

• If you do not include one of the access keywords, a function will be Public by default.
• Any number of Exit Function statements can be placed within the function. Execution will

continue with the line of code immediately following the call to the function. If a value has not
been assigned to the function when the Exit Function statement executes, the function will
return the default initialization value of the data type specified for the return value of the
function. If the data type of the function was an object reference, the exited function will return
Nothing.

• The return value of a function is passed back to the calling procedure by assigning a value to
the function name. This may be done more than once within the function.

• To return arrays of any type from a procedure, you must use parentheses after the data type
in the return value of the function declaration, as in:

Public Function Test() As Integer()

 350

• If you specify an optional parameter in your function declaration, you must also provide a
default value for that parameter. For example:

• Private Function ShowMessage(Optional sMsg _
 As String = "Not given")

Programming Tips and Gotchas

• There is often confusion between using the ByRef and ByVal methods to assign arguments
to a function. ByRef assigns a reference of the variable in the calling procedure to the variable
in the function; any changes made to the variable from within the function are in reality made
to the variable in the calling procedure. On the other hand, ByVal assigns the value of the
variable in the calling procedure to the variable in the function. Changes made to the variable
in the function have no effect on the variable in the calling procedure. In general, ByRef
arguments within class modules take longer to perform, since marshaling back and forth
between function and calling module must take place; so unless you explicitly need to modify
a variable's value within a function, it's best to pass parameters by value.

• Since a variable passed to a function by reference is actually modified by the function, you can
use such variables to "return" multiple values from the function.

VB .NET/VB 6 Differences

• If a parameter array is used in VB 6, it is a comma-delimited list of values in the calling
procedure that is treated as an array of variants in the called function. In VB .NET, the
arguments can be any data type, and they can be either an comma-delimited list of scalar
values or an array.

• In VB 6, the elements in parameter arrays are passed by reference; in VB .NET, they are
passed by value.

• If you do not specify whether an individual element in arglist is passed ByVal or ByRef, it
is passed by reference in VB 6. In VB .NET, it is passed by value.

• In VB 6, you can call a function that has arguments in a number of ways:
• x = SomeFunction(arg1, arg2)
• Call SomeFunction(arg1, arg2)

SomeFunction arg1, arg2

In VB .NET, parentheses are required in the function call:

x = SomeFunc(arg1, arg2)
Call SomeFunc(arg1, arg2)
SomeFunc(arg1, arg2)

• In VB 6, optional arguments do not require that you specify a default value. Instead, the
IsMissing function is used to determine whether the optional argument is supplied (although in
some cases it is unreliable). In VB .NET, you must assign a default value to an optional
argument.

See Also

Sub Statement

FV Function

 351

Class

Microsoft.VisualBasic.Financial

Syntax
FV(rate, nper, pmt[, pv [, due]])
rate

Use: Required

Data Type: Double

The interest rate per period

nper

Use: Required

Data Type: Integer

The number of payment periods in the annuity

pmt

Use: Required

Data Type: Double

The payment made in each period

pv

Use: Optional

Data Type: Variant

The present value of the loan or annuity

due

Use: Optional

Data Type: Constant of the DueDate enumeration that specifies whether payments are due at
the start or the end of the period. The value can be DueDate.BegOfPeriod or
DueDate.EndOfPeriod (the default).

Return Value

A Double specifying the future value of an annuity

Description

 352

Calculates the future value of an annuity (either an investment or loan) based on a regular number of
payments of a fixed value and a static interest rate over the period of the annuity.

Rules at a Glance

• The time units used for the number of payment periods, the rate of interest, and the payment
amount must be the same. In other words, if you state the payment period in months, you
must also express the interest rate as a monthly rate and the amount paid per month.

• The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you are
calculating using monthly periods, you must also divide the rate per period by 12. Therefore,
10% per annum, for example, equates to a rate per period of .00833.

• The pv argument is most commonly used as the initial value of a loan. The default is 0.
• Payments made against a loan or added to the value of savings are expressed as negative

numbers.
• The default value for the due argument is DueDate.EndOfPeriod.

See Also

IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

Get Statement

Syntax
Get()
 [statements]
End Get
statements

Use: Optional

Program code to be executed when the Property Get procedure is called

Description

Defines a Property Get procedure that returns a property value to the caller

Rules at a Glance

• The Get statement can only be used within a Property...End Property construct.
• The property value can be returned either by using the Return statement or by assigning the

value to a variable whose name is the same as the property. For example:
• Public Property MyProp As String
•
• Private sSomeVar as String
•
• Property Get()
• Return sSomeVar
• End Get
• ...

End Property

 353

or:

Public Property MyProp As String
 Private sSomeVar as String
 Property Get()
 MyProp = sSomeVar
 End Get
...
End Property

• The value returned by a property is usually the value of a variable that's Private to the class.
This protects the property value from accidental modification.

VB .NET/VB 6 Differences

The Property Get statement in VB 6 corresponds to the Get statement in VB .NET. Though the
purpose and basic operation of the two constructs is identical, the syntax of the VB .NET construct is
vastly simplified and more intuitive.

See Also

Property Statement, Set Statement

GetAllSettings Function

Class

Microsoft.VisualBasic.Interaction

Syntax
GetAllSettings(appname, section)
appname

Use: Required

Data Type: String

Name of the application

section

Use: Required

Data Type: String

Relative path from appname to the key containing the settings to retrieve

Return Value

An object containing a two-dimensional array of strings

 354

Description

Returns the registry value entries and their corresponding values for the application

Rules at a Glance

• GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_USER\Software\ VB
and VBA Program Settings.

• The elements in the first dimension of the array returned by GetAllSettings contain the value
entry names.

• The elements in the second dimension of the array returned by GetAllSettings contain the
values for the respective value entries.

• The two-dimensional array returned by GetAllSettings is based at 0 (as are all arrays) so the
first value entry name is referenced using (0,0).

• A call to GetAllSettings will return only the value entry names and data belonging to the final
registry key specified by the section argument. If that key itself has one or more subkeys,
their data will not be retrieved by the function.

• If either appname or section do not exist, GetAllSettings will return an uninitialized Object.

Programming Tips and Gotchas

• GetAllSettings is a function that was developed to retrieve data from initialization files in 16-bit
environments and to retrieve data from the registry under Windows 9x and Windows NT. The
language of the documentation, however, reflects the language of initialization files. The
arguments labeled appname and section are in fact registry keys; the argument labeled key
is in fact a registry value entry.

• The built-in registry-manipulation functions allow you to create professional 32-bit applications
that use the registry for holding application-specific data, in the same way that .INI files were
used in the 16-bit environment. You can, for example, store information about the user's
desktop settings (i.e., the size and position for forms) the last time the program was run.

• Because the built-in registry functions in VB only create string-type registry keys, GetSetting
and GetAllSettings return string values. Therefore, before you use numeric values returned
from the registry, you should explicitly convert the value to a numeric data type.

• GetAllSettings, SaveSettings, and GetSetting allow you direct access to only a limited section
of the windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\ VB and VBA Program Settings). You cannot
access or change other registry settings without using the Win32 API.

• Use the code Application.ExecutablePath to pass your application's name to the GetAllSetting
function.

• Only those settings that were created using either the Win32 API or the SaveSetting function
will be returned. In other words, a VB application does not have a registry entry unless you
have created one explicitly.

• If the key read by GetAllSettings has a default value, that value will not be retrieved by the
function. If you want to store and retrieve default values, you must call the Win32 API directly.

• Because GetAllSettings returns an uninitialized Object when either appname or section do
not exist, if you subsequently try to perform a UBound or LBound function on the object, a
"Type Mismatch" error will be generated. You can test the validity of the returned value, as
follows:

• Dim MySettings(,) As String
• Dim intSettings As Integer
• ' Place some settings in the registry.
• SaveSetting("WindowsApplication6", "Startup", "Top", "75")
• SaveSetting("WindowsApplication6", "Startup", "Left", "50")
• ' Retrieve the settings.
• MySettings = GetAllSettings(appname:="WindowsApplication6", _
• section:="Startup")

 355

• If Not (MySettings Is Nothing) Then
• For intSettings = 0 To UBound(MySettings, 1)
• Debug.WriteLine(MySettings(intSettings, 0))
• Debug.WriteLine(MySettings(intSettings, 1))
• Next intSettings
• DeleteSetting("WindowsApplication6", "Startup")
• else
• MsgBox("No settings")

End If

• Because GetAllSetting retrieves data from the user branch of the registry, and the physical file
that forms the user branch of the registry may change (depending, of course, on who the user
is and, in the case of Windows 9x systems, whether the system is configured to support
multiple users), never assume that an application has already written data to the registry. In
other words, even if you're sure that your application's installation routine or the application
itself has successfully stored values in the registry, never assume that a particular value entry
exists, and always be prepared to substitute a default value if it does not.

• Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetSetting Function, SaveSetting Procedure

GetAllSettings Function

Class

Microsoft.VisualBasic.Interaction

Syntax
GetAllSettings(appname, section)
appname

Use: Required

Data Type: String

Name of the application

section

Use: Required

Data Type: String

Relative path from appname to the key containing the settings to retrieve

Return Value

 356

An object containing a two-dimensional array of strings

Description

Returns the registry value entries and their corresponding values for the application

Rules at a Glance

• GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_USER\Software\ VB
and VBA Program Settings.

• The elements in the first dimension of the array returned by GetAllSettings contain the value
entry names.

• The elements in the second dimension of the array returned by GetAllSettings contain the
values for the respective value entries.

• The two-dimensional array returned by GetAllSettings is based at 0 (as are all arrays) so the
first value entry name is referenced using (0,0).

• A call to GetAllSettings will return only the value entry names and data belonging to the final
registry key specified by the section argument. If that key itself has one or more subkeys,
their data will not be retrieved by the function.

• If either appname or section do not exist, GetAllSettings will return an uninitialized Object.

Programming Tips and Gotchas

• GetAllSettings is a function that was developed to retrieve data from initialization files in 16-bit
environments and to retrieve data from the registry under Windows 9x and Windows NT. The
language of the documentation, however, reflects the language of initialization files. The
arguments labeled appname and section are in fact registry keys; the argument labeled key
is in fact a registry value entry.

• The built-in registry-manipulation functions allow you to create professional 32-bit applications
that use the registry for holding application-specific data, in the same way that .INI files were
used in the 16-bit environment. You can, for example, store information about the user's
desktop settings (i.e., the size and position for forms) the last time the program was run.

• Because the built-in registry functions in VB only create string-type registry keys, GetSetting
and GetAllSettings return string values. Therefore, before you use numeric values returned
from the registry, you should explicitly convert the value to a numeric data type.

• GetAllSettings, SaveSettings, and GetSetting allow you direct access to only a limited section
of the windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\ VB and VBA Program Settings). You cannot
access or change other registry settings without using the Win32 API.

• Use the code Application.ExecutablePath to pass your application's name to the GetAllSetting
function.

• Only those settings that were created using either the Win32 API or the SaveSetting function
will be returned. In other words, a VB application does not have a registry entry unless you
have created one explicitly.

• If the key read by GetAllSettings has a default value, that value will not be retrieved by the
function. If you want to store and retrieve default values, you must call the Win32 API directly.

• Because GetAllSettings returns an uninitialized Object when either appname or section do
not exist, if you subsequently try to perform a UBound or LBound function on the object, a
"Type Mismatch" error will be generated. You can test the validity of the returned value, as
follows:

• Dim MySettings(,) As String
• Dim intSettings As Integer
• ' Place some settings in the registry.
• SaveSetting("WindowsApplication6", "Startup", "Top", "75")
• SaveSetting("WindowsApplication6", "Startup", "Left", "50")
• ' Retrieve the settings.

 357

• MySettings = GetAllSettings(appname:="WindowsApplication6", _
• section:="Startup")
• If Not (MySettings Is Nothing) Then
• For intSettings = 0 To UBound(MySettings, 1)
• Debug.WriteLine(MySettings(intSettings, 0))
• Debug.WriteLine(MySettings(intSettings, 1))
• Next intSettings
• DeleteSetting("WindowsApplication6", "Startup")
• else
• MsgBox("No settings")

End If

• Because GetAllSetting retrieves data from the user branch of the registry, and the physical file
that forms the user branch of the registry may change (depending, of course, on who the user
is and, in the case of Windows 9x systems, whether the system is configured to support
multiple users), never assume that an application has already written data to the registry. In
other words, even if you're sure that your application's installation routine or the application
itself has successfully stored values in the registry, never assume that a particular value entry
exists, and always be prepared to substitute a default value if it does not.

• Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetSetting Function, SaveSetting Procedure

GetAttr Function

Class

Microsoft. VisualBasic.FileSystem

Yes

Syntax
GetAttr(pathname)
pathname

Use: Required

Data Type: String

Filename and an optional pathname

Return Value

An integer representing the sum of the following constants or members of the FileAttribute
enumeration, which reflect the attributes set for the file:

 358

FileAttribute Enum Constant Value Description
Normal VbNormal 0 Normal
ReadOnly VbReadOnly 1 Read-only
Hidden VbHidden 2 Hidden
System VbSystem 4 System
Directory VbDirectory 16 Directory or folder
Archive VbArchive 32 File has changed since last backup

Description

Determines which attributes have been set for a file or directory

Rules at a Glance

• pathname may optionally include a directory name and a drive letter, including a network
drive. pathname can also follow the UNC format of //machine_name/drive.

• You can check if a particular attribute has been set by performing a bitwise comparison of the
GetAttr return value and the value of the attribute constant using the And operator. A nonzero
result means that the particular attribute has been set; conversely, a zero value indicates that
the attribute has not been set. For example:

• If (GetAttr(myfile.txt) And VbReadOnly) = 0 then
• Msgbox "The file is Read-Write"
• Else
• MsgBox "The file is Read-Only"

End If

Programming Tips and Gotchas

If pathname is invalid, a FileNotFoundException exception is generated.

Class

Microsoft.VisualBasic.Strings

Syntax
GetChar(str, index)
str

Use: Required

Data Type: String

The string from which to extract a character

index

Use: Required

Data Type: Integer

Position of character (1-based)

 359

Return Value

A Char containing the character at position index

Description

Returns the character that is at position index within a given string

Rules at a Glance

• The first character in str is at index 1.
• If index exceeds the number of character positions in str, an error is generated.

VB .NET/VB 6 Differences

The GetChar function is new to VB .NET.

See Also

InStr Function, Left Function, Mid Function, Right Function

GetObject Function

Class

Microsoft. VisualBasic.Interaction

Syntax
GetObject([pathname] [, class])
pathname

Use: Optional

Data Type: String

The full path and name of the file containing the COM (or ActiveX) object.

class

Use: Optional

Data Type: String

The class of the object. The class argument has these parts:

Appname

Use: Required

 360

Data Type: String

The name of the application.

Objecttype

Use: Required

Data Type: String

The class of object to create, delimited from Appname by using a point (.). For example,
Appname.Objecttype

Return Value

Returns a reference to an ActiveX object

Description

Accesses an ActiveX server held within a specified file

Rules at a Glance

• Although both pathname and class are optional, at least one parameter must be supplied.
• In situations where you cannot create a project-level reference to an ActiveX object, you can

use the GetObject function to assign an object reference from an external ActiveX object to an
object variable.

• GetObject is used when there is a current instance of the ActiveX object; to create the
instance, use the CreateObject function.

• If you specify pathname as a zero-length string, GetObject will return a new instance of the
object—unless the object is registered as single instance, in which case the current instance
will be returned.

• If you omit the pathname, the current instance of the object will be returned.
• An error is generated if pathname is not specified and no current instance of the object can

be found.
• The object variable you will use within your program to hold a reference to the ActiveX object

is dimensioned as type Object. This causes the object to be late bound; that is, your program
knows nothing of the type of object nor its interface until the object has been instantiated
within your program:

• Dim myObject As Object
myObject = GetObject("C:\OtherApp\Library.lib")

• The details of how you create different objects and classes are determined by how the server
has been written, and you'll need to read the documentation available for the server to
determine what you need to do to reference a particular part of the object. There are basically
three ways in which you can access an ActiveX object:

1. The overall object library. This is the highest level and will give you access to all public
sections of the library and all its public classes:

GetObject("C:\OtherApp\Library.lib")

2. A section of the object library. To access a particular section of the library, use an
exclamation mark (!) after the filename, followed by the name of the section:

GetObject("C:\OtherApp\Library.lib!Section")

 361

3. A class within the object library. To access a class within the library, use the optional
Class parameter:

GetObject("C:\OtherApp\Library.lib", "App.Class")

Programming Tips and Gotchas

• Pay special attention to objects registered as single instance. As their type suggests, there
can only ever be one instance of the object created at any one time. Calling CreateObject
against a single-instance object more than once has no effect; you will still be returning a
reference to the same object. The same is true of using GetObject with a pathname of "";
rather than returning a reference to a new instance, you will be obtaining a reference to the
original instance of the object. In addition, you must use a pathname argument with single-
instance objects (even if this is ""); otherwise an error will be generated.

• You can't use GetObject to obtain a reference to a class created with Visual Basic.
• When possible, you should use early binding in your code. For more details on early and late

binding, see Chapter 2. You can use GetObject in early binding with COM objects, as in:
• Dim objExcel As Excel.Application

objExcel = GetObject(, "Excel.Application")

• The following table shows when to use GetObject and when to use CreateObject:

Task Use
Create a new instance of an OLE server CreateObject
Create a subsequent instance of an already instantiated server (if the server is not
registered as single instance) CreateObject

Obtain another reference to an already instantiated server without launching a
subsequent instance GetObject

Launch an OLE server application and load an instance of a subobject GetObject
Instantiate a class created with VB CreateObject
Instantiate a class registered on a remote machine CreateObject

See Also

CreateObject Function

GetSetting Function

Class

Microsoft.VisualBasic.Interaction

Syntax
GetSetting(appname, section, key[, default])
appname

Use: Required

Data Type: String

 362

The name of the application

section

Use: Required

Data Type: String

The path from the application key to the key containing the value entries

key

Use: Required

Data Type: String

The name of the value entry whose value is to be returned

default

Use: Optional

Data Type: String

The value to return if no value can be found

Return Value

A string containing the value of the specified key; default if key, section, or appname were not
found.

Description

Returns a single value from a specified section of your application's entry in the
HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ branch of the registry.

Rules at a Glance

• If at least one of appname, section, or key is not found in the registry, GetSetting returns
default.

• If default is omitted, it is assumed to be a zero-length string ("").
• The function retrieves a value from a subkey of the KEY_CURRENT_USER\Software\VB

and VBA Program Settings key of the registry.
• section need not be an immediate subkey of appname; instead, section can be a fully

qualified path to a nested subkey, with each subkey separated from its parent by a backslash.
For example, a value of Settings\Coordinates for the section argument indicates that
the value is to be retrieved from HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\appname\Settings\Coordinates.

Programming Tips and Gotchas

• GetSetting is a function that was developed to retrieve data from initialization files in 16-bit
environments and to retrieve data from the registry under Windows 9x and Windows NT. The
language of the official documentation, however, reflects the language of initialization files.

 363

The arguments labeled appname and section are in fact registry keys; the argument labeled
key is in fact a registry value entry.

• Because the built-in registry functions in VB create only string-type registry-value entries,
GetSetting and GetAllSettings return string values. Therefore, before you use numeric values
returned from the registry, you should explicitly convert the value to a numeric data type by
using the appropriate conversion function.

• Use the Application.ExecutablePath property to pass your application's name to the
GetSetting function as the value of the appname parameter, both when reading and writing
registry data.

• The built-in registry-manipulation functions allow you to create professional 32-bit applications
that use the registry for holding application-specific data, in the same way that .INI files were
used in the 16-bit environment. You can, for example, store information about the user's
desktop settings (i.e., the size and position of forms) the last time the program was run.

• GetSetting, GetAllSettings, and SaveSettings allow you direct access to only a limited section
of the windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings\yourappname).
You cannot access or change other registry settings without resorting to the Windows API.

• GetSetting does not allow you to retrieve the default value of a registry key. Attempting to do
so produces runtime error 5, "Invalid procedure call or argument." This is not as great a
limitation as it may appear, since SaveSetting also cannot write a default value to a registry
key.

• Because GetSetting retrieves data from the user branch of the registry, and the physical file
that forms the user branch of the registry may change (depending, of course, on who the user
is and, in the case of Windows 9x systems, whether the system is configured to support
multiple users), never assume that an application has already written data to the registry. In
other words, even if you're sure that your application's installation routine or the application
itself has successfully stored values in the registry, always supply a meaningful value for the
default argument.

• Only those settings that were created using either the Windows API or the SaveSetting
function will be returned. In other words, a VB application does not have a registry entry
unless you have created one explicitly.

• Although GetSetting writes only string data to the registry, you can use a variable of almost
any data type to retrieve it. The GetSetting function automatically handles the conversion of
string data to the data type of the variable to which the return value of GetSetting is assigned.
The only exceptions are user-defined data types and arrays of byte data.

• Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetAllSettings Function, SaveSetting Procedure

GetTimer Function

Class

Microsoft.VisualBasic.VBMath

Syntax
GetTimer()

 364

Return Value

A Double indicating the number of seconds

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

• You can use the GetTimer function as an easy method of passing a seed number to the
Randomize procedure, as follows:

Randomize GetTimer()

• The GetTimer function is ideal for measuring the time taken to execute a procedure or block of
code, as the following snippet shows:

• Dim dblStartTime As Double
• Dim i As Integer
•
• dblStartTime = Timer()
• For I = 1 to 100
• Console.WriteLine("Hello")
• Next
• Console.WriteLine("Time Taken = " & GetTimer() - _

 dblStartTime & " Seconds")

VB .NET/VB 6 Differences

• The GetTimer function is new to VB .NET. However, it is functionally identical to the VB 6
Timer function (and VB .NET Timer property), which continues to be supported.

• In contrast to the VB 6 Timer function, which returned a Single, the VB .NET GetTimer
function and Timer property return a Double.

See Also

Timer Property

GoTo Statement

Syntax
GoTo label
label

Use: Required

Type: String literal

A subroutine name

 365

Description

Passes execution to a specified line within a procedure

Rules at a Glance

label must be a line label

Programming Tips and Gotchas

• GoTo can branch only to lines within the procedure where it appears.
• It is not permitted to branch from outside a Try...Catch...Finally block to a point inside

the Catch or Finally block.
• It is also not permitted to branch from within the Catch or Finally block to a label outside

the block.
• The GoTo statement is most commonly used with the On Error statement to direct control to

an error-handling routine.
• GoTo is frequently used to control program flow within a procedure, a technique that often

produces highly unreadable "spaghetti code." Accordingly, great care should be taken when
using the GoTo statement.

VB .NET/VB 6 Differences

In VB 6, label could be either a line number or a label. In VB .NET, label can be only a label.

See Also

On Error Statement

Handles Keyword

Syntax
Handles name.event
name

Use: Required

Type: String literal

The name of the class or object whose event the subroutine is handling

event

Use: Required

Type: String literal

The name of the event that the subroutine is handling

 366

Description

Defines a procedure as the event handler for a particular event

Rules at a Glance

• The Handler keyword is used to define event handlers for events trapped by an object
defined with the WithEvents keyword.

• The Handles keyword can only be used with a procedure declaration, since an event handler
must be a procedure rather than a function.

• The Handles keyword must be placed on the same line as, and at the end of, a procedure
declaration.

Example

In a Windows application, the following definition appears in the declarations section of the Form1
class module:

Public WithEvents Button1 As Button

The Button1 object is then instantiated with a line of code like the following in the New subroutine or
another initialization routine:

Me.Button1 = New Button

The Button1 object's Click event can then be handled with a event handler like the following:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 MsgBox("Hello, World!")
End Sub

Programming Tips and Gotchas

• The WithEvents and Handles are designed to define event handlers at compile time. If you
want to define event handlers dynamically at runtime, use the AddHandler and
RemoveHandler statements.

• By convention, event handlers take the form objectname_eventname. For example, the
Click event of an object named Button1 could be trapped by an event handler named
Button1_Click. Although this convention is highly recommended, it is not obligatory.

VB .NET/VB 6 Differences

The Handles keyword is new to VB .NET. In VB 6, the link between an object and its event handler
was handled automatically and transparently by Visual Basic.

See Also

WithEvents Keyword

Hashtable Class

 367

Namespace

System.Collections

Createable

Yes

Description

A Hashtable object represents a collection of values (of type Object) that are indexed by objects called
keys (also of type Object). We can also think of a hash table as containing key/value pairs.

Identification of the location of elements in a hash table is done using a hashing function. Simply put, a
hashing function is a function that assigns a location in the hash table to each element, based on the
element's value. This is not the place to go into any detail about hashing. It is worth mentioning that
hash tables can be very efficient structures for storing and retrieving elements. However, there is no
"best approach" to defining hashing functions, and so only experimentation can determine whether this
particular implementation of a hash table is efficient in any given case.

Note that the Hashtable class is more flexible than the Collection class of the Microsoft.VisualBasic
namespace.

Hashtable class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method
Synchronized

Public Instance Properties
Count +
IsFixedSize
IsReadOnly
IsSynchronized
Item +
Keys +
SyncRoot
Values +

Public Instance Methods
Add +
Clear +
Clone
Contains
ContainsKey +
ContainsValue +
CopyTo +
Equals
GetEnumerator
GetHashCode
GetObjectData
GetType
OnDeserialization

 368

Remove +
ToString

Example

The following example illustrates most of the members that we will discuss:

Private Sub DoHashtable()
 Dim i As Integer
 Dim s() As DictionaryEntry
 Dim obj() As Object
 Dim icKeys As ICollection

 ' Define a new hash table
 Dim h As New Hashtable()

 ' Add some elements to the hash table
 h.Add("Be", "Beethoven")
 h.Add("Ch", "Chopin")
 h.Add("Mo", "Mozart")
 h.Add("Sc", "Schubert")

 ' Copy elements to an array of DictionaryEntry objects and display
 ReDim s(h.Count)
 h.CopyTo(s, 0)
 For i = 0 To h.Count - 1
 Debug.WriteLine(s(i).Value)
 Next

 ' Show the keys
 icKeys = h.Keys
 ReDim obj(h.Count)
 icKeys.CopyTo(obj, 0)
 For i = 0 To h.Count - 1
 Debug.WriteLine(CStr(obj(i)))
 Next

 ' Does the hash table contain the value "Beethoven"
 MsgBox("Beethoven: " & CStr(h.ContainsValue("Beethoven")))

 ' Clear the hash table
 h.Clear()
End Sub

VB .NET/VB 6 Differences

The Hashtable object is new to the .NET platform.

See Also

Collection Class, Queue Class, Stack Class

Hashtable.Add Method

 369

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Add(Key, Value)
Key

Use: Required

Data Type: Object

The hash table entry's key

Value

Use: Required

Data Type: Object

The hash table entry's value

Return Value

None

Description

Adds a key/value pair to the hash table

Rules at a Glance

• Key must be unique or a runtime error occurs.
• Keys are immutable. Once added, a particular key value cannot be changed during the

lifetime of the hash table except by removing it through the Remove or Clear method and then
adding it once again.

• Value need not be unique.

Programming Tips and Gotchas

• According to the documentation, it is better to build a key from a String object than the Base
Class Library's StringBuilder object.

• The Item property can also be used to add new members to the hash table.
• To insure that key is unique when calling the Add method, you can call the ContainsKey

method beforehand.

See Also

Hashtable.ContainsKey Method, Hashtable.Item Property

Hashtable.Clear Method

 370

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Clear()

Return Value

None

Description

Removes all entries from the hash table

Rules at a Glance

• The Clear method removes all items from the collection, leaving the Hashtable object
uninitialized. It does not set the object to Nothing.

• The Clear method sets the Hashtable object's Count property to 0.

Hashtable.ContainsKey Method

Class

System.Collections.Hashtable

Syntax
hashtablevariable.ContainsKey(Key)
Key

Use: Required

Data Type: Object

The key to search for among the hash table entries

Return Value

A Boolean indicating whether the key exists (True) or not (False)

Description

Indicates whether a given key is contained in the hash table

 371

Hashtable.ContainsValue Method

Class

System.Collections.Hashtable

Syntax
hashtablevariable.ContainsValue(Value)
Value

Use: Required

Data Type: Object

The value to search for among the hash table entries

Return Value

A Boolean indicating whether the value exists (True) or not (False)

Description

Indicates whether a given value is contained in the hash table

Programming Tips and Gotchas

ContainsValue is intended to determine whether a value exists in the hash table; it is not designed to
indicate the key belonging to a particular value or to determine whether multiple occurrences of a
particular value exist.

Hashtable.CopyTo Method

Class

System.Collections.Hashtable

Syntax
hashtablevariable.CopyTo(array, arrayindex)
array

Use: Required

Data Type: Array of DictionaryEntry structures

The destination of the items copied from the hash table

 372

arrayindex

Use: Required

Data Type: Integer

The first index that is to receive an element of the hash table

Return Value

None

Description

Copies the hash table values into an array of DictionaryEntry structures. A DictionaryEntry
structure is a key/value pair. Note that the array must be sized to accommodate the elements of the
hash table prior to calling the CopyTo method.

Rules at a Glance

• array must be a one-dimensional array.
• Elements are copied from the hash table to array in the same order in which the hash table

is iterated.
• The CopyTo method copies each key/value pair in the hash table to a DictionaryEntry

structure.
• array, the array of DictionaryEntry structures, must be sized before calling the CopyTo

method. This is illustrated in the example.

Example
Dim hshStates As New Hashtable
Dim aDE() As DictionaryEntry
Dim oDE As DictionaryEntry

hshStates.Add("NY", "New York")
hshStates.Add("MI", "Michigan")
hshStates.Add("CA", "California")
hshStates.Add("WI", "Wisconsin")
hshStates.Add("VT", "Vermont")
hshStates.Item("WA") = "Washington"

Redim aDE(hshStates.Count - 1)
hshStates.CopyTo(aDE, 0)
For each oDE in aDE
 Console.WriteLine(oDE.Key & ": " & oDE.Value)
Next

See Also

Hashtable.Keys Property

Hashtable.Count Property

 373

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Count()
hashtablevariable

Use: Required

Type: Hashtable object

A reference to a Hashtable object

Return Value

An Integer indicating the number of elements in the hash table

Description

This read-only property returns an Integer specifying the number of elements in the hash table.

Hashtable.Item Property

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Item(key)
hashtablevariable

Use: Required

Type: Hashtable object

A reference to a Hashtable object

key

Use: Required

Data Type: Object

The key whose value is to be retrieved

Return Value

 374

An Object representing the value associated with key

Description

Returns an Object that is the value associated with a particular key/value pair.

Rules at a Glance

• Item is the default property of the Hashtable object, and since it is parameterized, we can
write:

hashtablevariable(key)

• Item is a read/write property. In other words, you can use the Item property to retrieve the
value belonging to a particular key, as well as to modify the value belonging to a particular key.

• If key does not exist in the hash table when you attempt to retrieve a value, the Item property
returns Nothing.

• If key does not exist in the hash table when you attempt to modify a value, the key and its
associated value are added to the hash table, as a sort of implicit add. For example, if the key
"AK" does not exist in a hash table, the code fragment:

hshStates.Item("AK") = "Alaska"

adds the key "AK" and its associated value, "Alaska".

Programming Tips and Gotchas

• To guard against inadvertently adding a member to the hash table when you intend to modify
an existing value, call the ContainsKey method beforehand.

• You can also retrieve individual members of the Hashtable object by iterating it using the
For Each...Next statement. Each iteration of the loop returns a DictionaryEntry object
containing a single key/value pair. For information on the DictionaryEntry object, see the
entry for the Hashtable.CopyTo method.

Hashtable.Keys Property

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Keys()
hashtablevariable

Use: Required

Type: Hashtable object

A reference to a Hashtable object

 375

Return Value

An ICollection interface containing the keys in the hash table

Description

Returns an ICollection interface that contains the keys in the hash table. There is not much we
can do with an ICollection object except copy it to an array of Objects using its CopyTo method,
as the following example illustrates.

Example
Dim hshStates As New Hashtable
Dim iColl As ICollection
Dim aKeys(), sKey As String

hshStates.Add("NY", "New York")
hshStates.Add("MI", "Michigan")
hshStates.Add("CA", "California")
hshStates.Add("WI", "Wisconsin")
hshStates.Add("VT", "Vermont")
hshStates.Item("WA") = "Washington"
hshStates.Item("AK") = "Alaska"

Redim aKeys(hshStates.Count - 1)
iColl = hshStates.Keys
iColl.CopyTo(aKeys, 0)
for each sKey in aKeys
 Console.WriteLine(hshStates.Item(sKey))
Next

Programming Tips and Gotchas

You can work around the inconvenience of calling the ICollection object's CopyTo method to
convert the interface to another object by defining a class that inherits from or implements
ICollection.

See Also

Hashtable.Values Property

Hashtable.Remove Method

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Remove(key)
hashtablevariable

Use: Required

 376

Data Type: Hashtable object

A reference to a Hashtable object

key

Use: Required

Data Type: Object

The key whose key/value pair is to be removed

Return Value

None

Description

Removes an element from a hash table

Rules at a Glance

• If key is found in the hash table, the member is removed, and the Count property is
decreased by one.

• If key is not found in the hash table, the hash table remains unchanged, and no exception is
thrown.

Programming Tips and Gotchas

For cases in which you need to know whether the call to the Remove method has actually removed a
key, you can call the ContainsKey method beforehand to make sure that the key you want to remove
actually exists.

Hashtable.Values Property

Class

System.Collections.Hashtable

Syntax
hashtablevariable.Values()
hashtablevariable

Use: Required

Data Type: Object

A reference to a Hashtable object

 377

Return Value

An ICollection object containing the values in the hash table

Description

Returns an ICollection object that contains the values in the hash table. There is not much we can
do with an ICollection object except copy it to an array of objects.

See Also

Hashtable.Keys Property

Hex Function

Class

Microsoft.VisualBasic.Conversion

Syntax
Hex(number)
number

Use: Required

Data Type: Numeric or String

A valid numeric or string expression

Return Value

String representing the hexadecimal value of number

Description

Returns a string that represents the hexadecimal value of number

Rules at a Glance

• If number contains a fractional part, it will be automatically rounded to the nearest whole
number before the Hex function is evaluated.

• number must evaluate to a numeric expression that ranges from -2,147,483,648 to
2,147,483,647. If the argument is outside of this range, runtime error 6, "Overflow," results.

• The return value of Hex is dependent upon the value and type of number:

number Return value
Nothing Zero (0)

 378

Any other number Up to eight hexadecimal characters

Programming Tips and Gotchas

If the value of number is known beforehand and is not the result of an expression, you can represent
the number as a hexadecimal by simply affixing &H to number. Each of the following two statements
assigns a hexadecimal value to a variable, for instance:

lngHexValue1 = &HFF ' Assigns 255
lngHexValue2 = "&H" & Len(dblNumber) ' Assigns 8

See Also

Oct Function

Hour Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Hour(timevalue)
timevalue

Use: Required

Data Type: Date

Date variable or literal date

Return Value

An Integer from 0 to 23, specifying the hour of the day

Description

Extracts the hour element from a time expression

Example

The line:

MsgBox(Hour(#1:33:00 PM#))

displays the number 13.

Rules at a Glance

 379

• Regardless of the time format passed to Hour, the return value will be a whole number
between 0 and 23, representing the hour of a 24-hour clock.

• If time contains Nothing, 0 is returned, so be careful here to check for Nothing.
• You can also use the DatePart function.

See Also

Minute Function, Second Function

IDataObject Interface

Namespace

System.Windows.Forms

Createable

No

Description

The IDataObject interface is used by the Clipboard for data-transfer operations. It is also used for
drag-and-drop operations. An instance of the IDataObject interface is returned by the Clipboard
object's GetData method.

Public Instance Methods

Those methods marked with a plus sign (+) are covered in more detail in their own entries:

GetData +
GetDataPresent +
GetFormats +
SetData

VB .NET/VB 6 Differences

The IDataObject interface is new to VB .NET.

See Also

Clipboard.Object

IDataObject.GetData Method

Class

 380

System.Windows.Forms.IDataObject

Syntax
GetData(format [,autoconvert])
format

Use: Required

Data Type: String or Type object

Field member of the DataFormats class (see later for more information on this) or a Type
object representing the format of the data

autoconvert

Use: Optional

Data Type: Boolean

True to convert the data to the specified format

Return value

An Object that contains Clipboard data in the specified format

Description

Retrieves the data of the given format, optionally converting the data format

Rules at a Glance

• The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

 381

• If format is a string, the autoconvert argument can be supplied in the method call.
• If the GetData method cannot find data in format, it attempts to convert the data to format.

If the data cannot be converted to the format, or if the data was stored with autoconvert
set to False, the method returns Nothing.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject
Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

' Call GetData method of IDataObject object to get clipboard data
obj = di.GetData(DataFormats.Text, False)

' Show the text, if any
If obj Is Nothing Then
 MsgBox("No text on clipboard.")
Else
 MsgBox(CStr(obj))
End If

See Also

IDataObject.GetDataPresent Method, IDataObject.GetFormats Method

IDataObject.GetDataPresent Method

Class

System.Windows.Forms.IDataObject

Syntax
GetDataPresent(format [,autoconvert])
format

Use: Required

Data Type: String or Type object

Field member of the DataFormats class (see later for more information on this) or a Type
object representing the format of the data for which to search

autoconvert

Use: Optional

Data Type: Boolean

 382

True to convert the data to the specified format

Return value

Boolean value indicating whether the Clipboard holds data of the specified format or of a format that
can be converted to format

Description

Returns a Boolean value indicating whether the Clipboard holds data of the specified format or of a
format that the present data can be converted to

Rules at a Glance

• The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

• If format is a string, the autoconvert argument can be supplied in the method call. A value
of False indicates that the function should determine whether the data stored by the
IDataObject instance is in the format defined by format; a value of True, whether the
data stored by the IDataObject instance is in or is capable of being converted to the format
defined by format.

Example

The following code will inform us whether the Clipboard contains a bitmap:

Dim di As IDataObject
di = clipboard.GetDataObject
MsgBox(di.GetDataPresent(Dataformats.Bitmap))

See Also

IDataObject.GetData Method, IDataObject.GetFormats Method

 383

IDataObject.GetFormats Method

Class

System.Windows.Forms.IDataObject

Syntax
GetDataFormats([autoconvert])
autoconvert

Use: Optional

Data Type: Boolean

True to retrieve all formats that the Clipboard data is associated with or can be converted to;
False to retrieve only native data formats

Return Value

A String array containing a list of all supported formats

Description

Retrieves a list of all the formats that the Clipboard data is associated with or can be converted to

Rules at a Glance

The elements in the array returned by the method can take any of the following values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

 384

See Also

IDataObject.GetData Method, IDataObject.GetDataPresent Method

IEEERemainder Function

Class

System.Math

Syntax
Math.IEEERemainder(x, y)
x and y

Use: Required

Data Type: Double

Return Value

Returns the remainder after dividing x by y

Description

Returns a Double whose value is the remainder after dividing x by y

Example
Math.IEEEremainder(4, 3) ' Returns 1

Rules at a Glance

• VB has a built-in Mod operator that also returns the remainder upon division.
• The IEEERemainder function complies with the remainder operation as defined in Section 5.1

of ANSI/IEEE Std 754-1985; IEEE Standard for Binary Floating-Point Arithmetic; Institute of
Electrical and Electronics Engineers, Inc; 1985.

Programming Tips and Gotchas

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The IEEERemainder function is new to the .NET Framework.

If...Then...Else Statement

 385

Syntax
If condition Then
 [statements]
[ElseIf condition-n Then
 [elseifstatements] ...
[Else
 [elsestatements]]
End If

Or, you can use the single line syntax:

If condition Then [statements] [Else elsestatements]
condition

Use: Required

Data Type: Boolean

An expression returning either True or False or an object type

statements

Use: Optional

Program code to be executed if condition is true

condition-n

Use: Optional

Same as condition

elseifstatements

Use: Optional

Program code to be executed if the corresponding condition-n is True

elsestatements

Use: Optional

Program code to be executed if the corresponding condition or condition-n is False

Description

Executes a statement or block of statements based on the Boolean (True or False) value of an
expression

Rules at a Glance

 386

• If condition is True, the statements following the If are executed.
• If condition is False and no Else or ElseIf statement is present, execution continues

with the corresponding End If statement. If condition is False and ElseIf statements
are present, the condition of the next ElseIf is tested. If condition is False and an Else
is present, the statements following the Else are executed.

• In the block form, each If statement must have a corresponding End If statement. ElseIf
statements do not have their own End If. For example:

• If condition Then
• statements
• ElseIf condition Then
• statements

End If

• ElseIf and Else are optional, and any number of ElseIf and Else statements can appear
in the block form. However, no ElseIf statements can appear after an Else.

• condition can be any statement that evaluates to True or False.
• If condition returns Null, it will be treated as False.
• You can also use the If statement to determine object types by using the TypeOf and Is

keywords, as follows:

If TypeOf objectname Is objecttype Then

• statements are only optional in the block form of If. However, statements are required
when using the single-line form of If in which there is no Else clause.

Programming Tips and Gotchas

• You can use the single-line form of the If statement to execute multiple statements, which
you can specify by delimiting the statements using colons. However, single-line If statements
are hard to read and maintain and should be avoided for all but the simplest of situations.

• In situations where you have many possible values to test, you will find the Select Case
statement much more flexible, manageable, and readable than a bunch of nested If
statements.

• You will come across situations in which very large blocks of code have to be executed based
one or more conditions. In these—and in all situations—you should try to make your code as
readable as possible, not only for other programmers, but for yourself, since you will probably
need to revisit the code several months down the line. For example, consider a scenario in
which, at the beginning of a procedure, a check is made to see if the procedure should be
executed under a given set of circumstances. You have the choice of surrounding the whole
code with an If...Then...End If construct, like this:

• If iSuccess Then
• ...
• ...
• ...

End If

Or you can instead check for a False condition and, if found, exit the subroutine:

If Not iSuccess Then
 Exit Sub
End If
...
...
...

 387

The latter alternative can be much easier to read.

• Indentation is important for the readability of If, and especially nested If, statements. The
set of statements within each new If...Else...EndIf block should be indented. When
using the Visual Studio IDE, you can simply select a block of code and press the tab key to
indent the complete selected block. The following example shows correctly indented code:

• If x = y Thenx
• DoSomethingHere
• If y < z Then
• DoSomethingElseToo
• Else
• DoAnotherThing
• If z - 1 = 100 Then
• DoAThing
• End If
• End If
• Else
• DoAlternative

End If

• You may often run into code such as:

If iSuccess Then ...

where iSuccess is an Integer variable. The statement works because Visual Basic interprets
all non-zero values as equal to Boolean True and all zero values as equal to Boolean False.
However, if Option Strict is on, statements such as these will generate a compiler error,
since VB .NET will not automatically convert the iSuccess integer to the Boolean required by
the If statement.

• Logical comparison operators can be included in the condition expression, allowing you to
make decisions based on the outcome of more than one individual element. The most
common of these is And and Or. You can create conditions like:

If (x = 0) Or (1/x = 2) Then

Note the use of parentheses to improve readability.

• Visual Basic will evaluate only as much of the condition as is necessary to determine the truth
value of the condition, a method of evaluation known as short-circuiting. Concretely, VB will
stop evaluating multiple expressions like with Or once the first condition is True, and will stop
evaluating conditions with And once the first condition is False. For instance, in the previous
case, if x = 0, the statement (1/x = 5) will not be evaluated, which is a good thing, since it
would produce an error.

• In Beta 2, VB .NET appears to use conditional short-circuiting in evaluating If clauses. If a
portion of a compound expression calls an external routine or function, that subexpression will
be evaluated even if the result of the expression is known. This is because calls to other
routines may modify program variables. The following code illustrates this conditional short-
circuiting:

• Module modMain
• Public Sub Main
•
• Dim x as Integer = 0
•
• If (x = 0) Or (4 / x = 2) Then

 388

• Console.writeline("The condition is true")
• Else
• Console.Writeline("The condition is false")
• End If
• if (x > 0) And (4/x = 2) Then
• Console.writeline("The condition is true")
• Else
• Console.Writeline("The condition is false")
• End If
•
• Try
• If (x = 0) Or (DivBy0(x) = 2) Then
• Console.Writeline("The condition is true")
• Else
• Console.Writeline("The condition is false")
• End If
• Catch e As System.OverflowException
• Console.WriteLine("Division by 0 error with Or")
• End Try
• Try
• If (x > 0) And (DivBy0(x) = 2) Then
• Console.Writeline("The condition is true")
• Else
• Console.Writeline("The condition is false")
• End If
• Catch e As System.OverflowException
• Console.WriteLine("Division by 0 error with And")
• End Try
•
• End Sub
•
• Public Function DivBy0(x As Integer) As Integer
• DivBy0 = 4 / x
• End Function
•

End Module

The two compound expressions with Or are functionally identical, as are the two compound
expressions using And. The difference is that the second set of If statements call the DivBy0
function, whereas the first set perform the division by 0 inline, as part of condition. The first
divisions by do not raise an error, since the second subexpression in each case is never
evaluated. The second divisions by 0, though, do raise an error, since they involve a call to
another routine.

• The If statement is also used with objects to determine if an object variable is Nothing. This
is done using the Is operator:

If Not (objectvar Is Nothing) Then

VB .NET/VB 6 Differences

VB 6 does not use short circuiting. If condition consists of multiple logical expressions, each is
evaluated whether or not the value of condition is already known. VB .NET relies on conditional

 389

short-circuiting to evaluate multiple expressions in condition only until the value of condition is
known, unless any expressions involve calls to functions that might modify program variables.

See Also

IIf Function

IIf Function

Class

Microsoft.VisualBasic.Interaction

Syntax
IIf(expression, truepart, falsepart)
expression

Use: Required

Data Type: Boolean

Expression to be evaluated

truepart

Use: Required

Data Type: Any value or expression

Expression or value to return if expression is True

falsepart

Use: Required

Data Type: Any value or expression

Expression or value to return if expression is False

Return Value

The value or result of the expression indicated by truepart or falsepart

Description

Returns one of two results, depending on whether expression evaluates to True or False

Rules at a Glance

 390

• IIf will evaluate only one of truepart or falsepart, depending on the value of
expression.

• The IIf function is the equivalent of:
• If testexpression Then
• Return truepart
• Else
• Return falsepart

End If

• truepart and falsepart can be a variable, constant, literal, expression, or the return value
of a function call.

Programming Tips and Gotchas

• The IIf function is ideal for very simple tests resulting in single expressions. If you really feel
the need, IIf function calls can be nested; however, your code can very quickly become
difficult to read. The following code fragment illustrates the use of a nested IIf function:

• Dim x As Integer
• x = CInt(Text1.Text)
• MsgBox(IIf(x < 10, "Less than ten", IIf(x < 20, _

 "Less than 20", "Greater than 20")))

• In previous versions of VB, developers tended to avoid the IIf function in favor of the If
statement for all but the most simple uses because of its poor performance. In VB.NET, the
performance of IIf has been improved significantly, although it remains significantly slower
than an If statement. The average number of seconds required to call the IIf function a
million times and to execute an If...ElseIf...Else...End If statement a million times
under the two VB versions showed the following differences:

 IIf function If statement
VB 6 11.09 0.52
VB .NET 6.12 0.02

• In other words, the performance of IIf from VB 6 to VB .NET has improved by 100%. At the
same time, the function is over 300 times slower than an If statement under VB .NET!

See Also

If...Then...Else Statement

Implements Keyword

Syntax
Implements interfacename.interfacemember
interfacename

Use: Required

Type: String literal

 391

The name of the interface being implemented by a class

interfacemember

Use: Required

Type: String literal

The name of the interface property, function, procedure, or event that is being implemented by
a class

Description

Indicates that a class member provides the implementation of a member defined in an interface

Rules at a Glance

• The Implements keyword can only be used in a class module in which the Implements
statement has been used to define an abstract base class that the class is to implement.

• The Implements keyword follows the property, function, procedure, or event definition, and
must be on the same line.

• The class member implementing the interface member must be of the same type (property,
function, procedure, or event) as the interface member, and its argument list and, in the case
of functions and properties, return type must also be identical to that of the interface member.

• Class members must implement all of the members declared in the interface.

Example

See the example in the Implements Statement entry.

VB .NET/VB 6 Differences

• The Implements keyword is new to VB .NET. This means that the implementation of a
property, function, procedure, or event does not have to use the name defined by the interface.
This modifies the VB 6 practice, which requires that class members that implement an
interface definition have the form interfacename_membername.

• VB 6 does not allow derived classes to implement events defined in interfaces. VB .NET
removes this restriction.

See Also

Implements Statement, Interface Statement

Implements Statement

Syntax
Implements InterfaceName [,InterfaceName][,...]
InterfaceName

Use: Required

 392

Type: String literal

The name of the interface that a class implements

Description

The Implements statement specifies that you will implement an interface within the class in which the
Implements statement appears.

Rules at a Glance

• Implementing an interface or class means that the implementing class will provide code to
implement every Public member of the implemented interface or class. If you fail to implement
even a single Public member, an error will result.

• The Implements statement cannot be used in a standard module; it is used only in class
modules.

• By convention, interface names begin with a capital I, as in IMyInterface.
• For more information on this topic, see Chapter 3.

Example
Friend Interface IAnimal

 ReadOnly Property Name() As String
 Function Eat() As String
 Function SoundNoise() As String
End Interface

Public Class CWolf
 Implements IAnimal

 Public ReadOnly Property Name() As String _
 Implements IAnimal.Name
 Get
 Return "Wolf"
 End Get
 End Property

 Public Function Eat() As String Implements IAnimal.Eat
 Eat = "caribou, salmon, other fish"
 End Function

 Public Function Sound() As String Implements IAnimal.SoundNoise
 Sound = "howl"
 End Function
End Class

Module modMain

Public Sub Main
 Dim oWolf As New CWolf
 Console.WriteLine(oWolf.Sound)
 oWolf = Nothing
End Sub

End Module

Programming Tips and Gotchas

 393

• If you do not wish to support a procedure from the implemented class, you must still create a
procedure declaration for the implemented procedure. However, you can simply raise an error
using the special error constant Const E_NOTIMPL = &H80004001 so a user will know that
the member is not implemented in any meaningful way. Alternately, you can also raise a
NotImplementedException exception

• Interfaces, or abstract base classes, allow for greater coherence when developing in teams.
For example, all developers could use a set of interfaces to produce controls and objects of a
particular type without being constrained by implementation. That is, each developer would be
free to implement a particular property or method in the way that he saw fit.

• Maintaining compatibility across multiple versions dictates that interfaces should not change
once they have been written and distributed. Any additional functionality required should be
provided by defining additional interfaces.

• VB .NET provides only single inheritance using the Inherits statement. However, by using
interface-based inheritance with the Implements statement, you can in effect implement
multiple inheritance.

VB .NET/VB 6 Differences

• In VB 6, the Implements statement does not support events; any events publicly declared in
an interface are ignored. VB .NET, on the other hand, allows derived classes to trap the
events defined in interfaces.

See Also

Implements Statement, Interface Statement

Imports Statement

Syntax
Imports [aliasname =] namespace
aliasname

Use: Optional

Type: String literal

The name by which the namespace will be referenced in the module

namespace

Use: Required

Type:

The name of the namespace being imported

Description

Imports namespaces and assemblies, making their classes and class members available to the
current module

 394

Rules at a Glance

• A single Imports statement can import one namespace.
• A module can have have as many Imports statements as needed.
• Imports statements are used to import names from other projects and assemblies, as well

as from namespaces in the current project.
• Imports statements must be placed in a module before references to any identifiers (e.g.,

variables, classes, procedures, functions, etc.).
• If aliasname is absent from an Imports statement, types in that namespace can be

referenced without qualification.
• If aliasname is present in an Imports statement, types in that namespace must be qualified

with aliasname in order to be accessible.
• The name aliasname must not be assigned to any other member within the module.

Programming Tips and Gotchas

• In ASP.NET, a number of namespaces are imported automatically. These include
System.Web and its child namespaces.

• You do not use the Imports statement to import namespaces into an ASP.NET application.
Instead, you can import a namespace into an ASP.NET application in a number of ways:

o By creating an <add namespace> directive in a web.config configuration file. For
example:

o <compilation>
o <namespaces>
o <add namespace="System.IO" />
o ...

 </namespaces>

imports the System.IO namespace within the scope defined in the web.config file.

o By adding an @ Import directive to global.asax. For example:

<%@ Import namespace="System.IO" %>

imports the System.IO namespace for the ASP.NET application.

o By adding an @ Import page directive. This has the same form as the global.asax
directive, and must appear at the beginning of the page.

See Also

Namespace Statement

Inherits Statement

Syntax
Inherits classname
classname

Use: required

 395

Type: String literal

The name of the inherited (base) class

Description

Specifies the name of the class that is being inherited; that is, the base class

Rules at a Glance

• The Inherits statement must be the first line of code in the class module. It can be
preceeded only by blank lines or comments. For example:

• Public Class CDerivedClass
• Inherits CBaseClass

 ...

• VB.NET supports single inheritance only. That is, there can be only a single Inherits
statement in any class module.

Programming Tips and Gotchas

The Inherits statement implements code inheritance. You can also use the Implements statement
to implement interface inheritance. In that case, a class can be derived from more than one virtual
base class. (In other words, you can effectively implement multiple inheritance through interface
inheritance using the Implements statement.)

See Also

Class Statement

Input Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
LineInput(filenumber,value)
filenumber

Use: Required

Data Type: Integer

Any valid file number

value

Use: Required

 396

Data Type: Any

Data to read from file

Description

Reads delimited data from a file into variables. This statement is used to read files that were created
using the Write procedure, in which case the items are comma delimited with quotation marks around
strings.

Rules at a Glance

• Data read by Input has usually been written using the Write procedure.
• Use this statement with files that have been opened in Input or Binary mode only.
• If value is numeric and the Input procedure encounters non-numeric data, an

InvalidCastException exception occurs.
• The Input procedure strips off the quotation marks that it finds around strings.
• After the Input procedure reads value, it advances the file pointer to the next unread variable

or, if the file contains no additional delimited data, to the end of the file.
• If the end of the file is reached during the operation of the Input procedure, an error is

generated.
• The Input procedure assigns string or numeric data to value without modification. However,

other types of data can be modified as shown in the following table:

Data Value assigned to variable
Delimiting comma or blank line "" (empty string)
#TRUE# or #FALSE# True or False
#yyyy-mm-dd hh:mm:ss# Date and/or time

• Note that #TRUE# and #FALSE# are case sensitive.

Example

If the file c:\data.txt contains the following data:

"one", "two", "three"

then the following code will print each string on a separate line in the Output window:

Dim fr As Integer = FreeFile()
Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input)

Do While Not EOF(fr)
 Input(fr, sLine)
 Debug.WriteLine(sLine)
Loop

FileClose(fr)

Programming Tips and Gotchas

• Use the EOF function to determine whether the end of the file has been reached.

 397

• Use the Write procedure to write data to a file, since Write delimits data fields correctly. This
ensures that the data can be read correctly with the Input procedure.

VB .NET/VB 6 Differences

The VB .NET Input procedure corresponds to the VB 6 Input procedure, with a number of significant
differences:

• The # symbol, which optionally preceded filenumber in VB 6, is not supported in VB .NET.
• In VB 6, the value argument could be a comma-delimited list of variables. In VB .NET, it must

be a single variable of any type.
• In VB 6, if value is numeric and the data read from the file is not numeric, value is initialized

to the default value for that type. In VB .NET, this generates an exception.
• In addition to the standard data types, VB 6 also recognizes Empty, Null, and Error types. In

VB .NET, these are not supported.

See Also

Write Procedure

InputBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax
InputBox(prompt[, title] [, defaultresponse] [, xpos] _
 [, ypos])
prompt

Use: Required

Data Type: String

The message in the dialog box

title

Use: Optional

Data Type: String

The title bar of the dialog box

defaultresponse

Use: Optional

Data Type: String

 398

String to be displayed in the text box on loading

xpos

Use: Optional

Data Type: Numeric

The distance in twips from the left-hand side of the screen to the left-hand side of the dialog
box

ypos

Use: Optional

Data Type: Numeric

The distance in twips from the top of the screen to the top of the dialog box

Return Value

A String containing the contents of the text box from the InputBox dialog box.

Description

Displays a dialog box containing a prompt for the user, a text box for entering data, and an OK, a
Cancel, and (optionally) a Help button. When the user clicks OK, the function returns the contents of
the text box.

Rules at a Glance

• If the user clicks Cancel, a zero-length string ("") is returned. Thus, once again, Microsoft has
apparently made it impossible for us to distinguish when the user enters the empty string and
when the user hits the Cancel button.

• prompt can contain approximately 1,000 characters, including nonprinting characters like the
intrinsic vbCrLf constant.

• If the title argument is omitted, the name of the current application or project is displayed in
the title bar.

• If you don't use the default parameter to specify a default entry for the text box, the text box
is shown as empty, and a zero-length string is returned when the user does not enter anything
in the text box prior to clicking OK.

• xpos and ypos are specified in twips.
• If the xpos parameter is omitted, the dialog box is centered horizontally.
• If the ypos parameter is omitted, the top of the dialog box is positioned approximately one-

third of the way down the screen.

Programming Tips and Gotchas

• If you are omitting one or more of the optional arguments and are using subsequent
arguments, you must use a comma to signify the missing parameter. For example, the
following code fragment will display a prompt, a default string in the text box, and the Help
button, but default values will be used for the title and positioning.

• Dim sString As String = InputBox("Enter it now", , _
 "Something")

 399

• Note that InputBox returns a string. Your code is responsible for converting it to the required
data type before using it.

See Also

MsgBox Function

InputString Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
InputString(filenumber, charcount)
filenumber

Use: Required

Data Type: Integer

Any valid file number

charcount

Use: Required

Data Type: Integer

Number of characters to read from file

Return Value

A String containing charcount characters

Description

Reads data from a file into a string variable

Rules at a Glance

• InputString should only be used with files opened in input (OpenMode.Input) or binary mode
(OpenMode.Binary).

• InputString begins reading from the current position of the file pointer.
• InputString returns all the characters it reads, regardless of their type. This include spaces,

carriage returns, linefeeds, commas, end-of-file markers, unprintable characters, etc.
• Once the function finishes reading charcount characters, it also advances the file pointer

charcount characters.

 400

Example

If the file c:\data.txt contains the data:

abcdefghijklmnopq

the following code reads the characters, three at a time:

Dim fr As Integer = FreeFile()
Dim sLine As String
Dim i As Long
FileOpen(fr, "c:\data2.txt", OpenMode.Input)

For i = 1 To LOF(fr) \ 3
 sLine = InputString(fr, 3)
 Debug.WriteLine(sLine)
Next

FileClose(fr)

Programming Tips and Gotchas

• InputString reads data written to a file using the Print, PrintLine, or FilePut functions.
• InputString always attempts to precisely read charcount characters from the file. If there are

no charcount characters from the position of the file pointer to the end of the file, InputString
attempts to read beyond the end of the file, thereby generating an exception. To prevent this,
you should use the LOF function after opening the file to ensure that you don't attempt to read
past the end-of-file marker.

VB .NET/VB 6 Differences

• Though a new function in VB .NET, InputString directly corresponds to the Input, Input$,
InputB, and InputB$ functions in VB 6.

• The order of parameters are reversed in VB .NET and VB 6. In VB 6, the first parameter is
charcount, and the second is filenumber.

• The # symbol, which optionally preceded filenumber in VB 6, is not supported in VB .NET.

See Also

FilePut, FilePutObject Procedures, Print, PrintLine Procedures

InStr Function

Class

Microsoft.VisualBasic.Strings

Syntax
InStr(start, string1, string2[, compare])

 401

or:

InStr(string1, string2[, compare])
start

Use: Required in first syntax

Data Type: Numeric

The starting position for the search

string1

Use: Required

Data Type: String

The string being searched

string2

Use: Required

Data Type: String

The string being sought

compare

Use: Optional

Data Type: CompareMethod enumeration

The type of string comparison

Return Value

An Integer indicating the position of the first occurrence of string2 in string1

Description

Finds the starting position of one string within another

Rules at a Glance

• The return value of InStr is influenced by the values of string1 and string2, as the
following table details:

Condition InStr return value
string1 is zero-length or Nothing 0

string2 is zero-length or Nothing start

string2 not found 0

 402

string2 found within string1 Position at which the start of string2 is found
start > len(string2) 0

• In the second syntax, InStr commences the search with the first character of string1.
• If the start argument is 0 or Nothing, an error occurs.
• The compare argument can be one of CompareMethod.Binary (a case-sensitive

comparison) or CompareMethod.Text (a case-insensitive comparison). If comparemode is
omitted, the type of comparison is determined by the Option Compare setting.

See Also

InStrRev Function

InStrRev Function

Class

Microsoft.VisualBasic.Strings

Syntax
InstrRev(stringcheck, stringmatch[, start[, compare]])
stringcheck

Use: Required

Data Type: String

The string to be searched.

stringmatch

Use: Required

Data Type: String

The substring to be found within stringcheck.

start

Use: Optional

Data Type: Numeric

The starting position of the search. If no value is specified, start defaults to 1.

compare

Use: Optional

 403

Type: CompareMethod enumeration

A constant indicating how stringcheck and stringmatch should be compared.

Return Value

Long

Description

Determines the starting position of a substring within a string by searching from the end of the string to
its beginning

Rules at a Glance

• While InStr searches a string from left to right, InStrRev searches a string from right to left.
• The compare argument can be one of CompareMethod.Binary (for a case-sensitive

search) or CompareMethod.Text (for a case-insensitive search). If compare is omitted, the
type of comparison is binary. Note that Option Compare is not used, unlike with the InStr
function.

• start designates the starting point of the search as counted from the start of stringcheck.
To start the search at the end of stringcheck, either omit the start argument or set it to -1.

• If stringmatch is not found, InStrRev returns 0.
• If stringmatch is found within stringcheck, the value returned by InStrRev is the position

of stringcheck from the start of the string.

Example

This example uses both InStr and InStrRev to highlight the different results produced by each. Using a
stringcheck of "I like the functionality that InStrRev gives", InStr finds the first occurrence of "th" at
character 8, while InStrRev finds the first occurrence of "th" at character 26.

Dim myString, sSearch As String

myString = "I like the functionality that InsStrRev gives"
sSearch = "th"

Debug.WriteLine(InStr(myString, sSearch))
Debug.WriteLine(InStrRev(myString, sSearch))

See Also

InStr Function

Int Function

Class

Microsoft.VisualBasic.Conversion

 404

Syntax
Int(number)
number

Use: Required

Data Type: Any valid numeric data type

The number to be processed

Return Value

Returns a value of the data type passed to it

Description

Returns the integer portion of a number

Rules at a Glance

• The fractional part of number is removed, and the resulting integer value is returned. Int does
not round number to the nearest whole number. For example, Int(100.9) returns 100.

• If number is negative, Int returns the first negative integer less than or equal to number. For
example, Int(-10.1) returns -11.

Programming Tips and Gotchas

• Int and Fix work identically with positive numbers. However, for negative numbers, Fix returns
the first negative integer greater than number, while Int returns the first negative integer less
than number. For example, Fix(-10.1) returns -10, while Int(-10.1) returns -11.

• Don't confuse the Int function with CInt. CInt casts the number passed to it as an Integer data
type, whereas Int returns the same data type that was passed to it.

See Also

CInt Function, Fix Function, Round Function

Interface Statement

Syntax
[accessmodifier] Interface name
...statements
End Interface
accessmodifier

Use: Optional

Type: Keyword

 405

One of the following keywords, which determines the visibility of the interface:

Public

Use: Optional

Type: Keyword

Indicates that the interface is publicly accessible anywhere both inside and outside of the
project

Private

Use: Optional

Type: Keyword

Indicates that the interface is accessible to any nested types, as well as to the type (if any) in
which it is defined

Protected

Use: Optional

Type: Keyword

Indicates that the interface is accessible only to derived classes; a protected interface can only
be declared inside of a class.

Friend

Use: Optional

Type: Keyword

Indicates that the interface is accessible only within the project that contains the interface
definition

Protected Friend

Use: Optional

Type: Keyword

Indicates that the interface is declard inside of a class and that it is accessible throughout the
project that contains the interface definition, as well as to derived classes

Shadows

Use: Optional

Type: Keyword

Indicates that the interface shadows an identically named element in a base class

 406

name

Use: Required

Type: String literal

The name of the interface

statements

Use: Required

Code that defines the interface members that derived classes must implement

Description

Defines a virtual base class along with its public members. The interface can then be implemented by
derived classes using the Implements statement.

Rules at a Glance

• The standard naming conventions for name apply. However, by convention, interface names
generally begin with the letter I.

• If accessmodifier is omitted, the interface is Public by default.
• The interface definition (statements) may contain the following elements:

Inherits statement

Indicates that name inherits its properties and methods from another interface. Its syntax is:

Inherits interfacename[, interfacename...]

where interfacename is the name(s) of the interface(s) from which name inherits.

Property definitions

Property definitions take the form:

[Default] Property proname([arglist]) As type

where procname is the name of the property, Default indicates that procname is a
property array (whose argument list is defined by arglist) that is the interface's default
property, and type indicates the data type of the property. The ReadOnly and WriteOnly
keywords can also be used.

Function definitions

Functions are defined as follows:

Function membername([arglist]) As type

where membername is the name of the function, arglist defines the number and type of
arguments that can be passed to the procedure, and type indicates the function's return
value..

 407

Procedure definitions

Procedures are defined as follows:

Sub membername[(arglist)]

where membername is the name of the procedure, and arglist specifies the number and
type of arguments that can be passed to the procedure.

Event definitions

Events are defined as follows:

Event membername[(arglist)]

where membername is the name of the event, and arglist defines the number and type of
arguments that are passed back to an event handler whenever the event is fired.

In each case, the syntax of the statement is different from the "standard" VB .NET syntax.
Access modifiers, for instance, are not permitted as a part of interface member definitions, nor
are End... statements, such as End Function, End Sub, or End Property.

• The name interface cannot inherit from an interface whose access type is more restrictive than
its own. For example, if name is a Public interface, it cannot inherit from a Friend interface.

• Classes that implement the interface must implement each of its methods, which must have
the same argument list and, in the case of functions and properties, return a value of the same
data type as specified by the interface definition.

Programming Tips and Gotchas

An interface can have only one default property. This includes properties defined in base interfaces,
as well as in the interface itself.

VB .NET/VB 6 Differences

The Interface...End Interface construct is new to VB .NET. In VB 6, an interface is defined by
creating a class module whose members have no implementation.

See Also

Implements Keyword, Implements Statement

IPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax
IPmt(rate, per, nper, pv[, fv[, due]])

 408

rate

Use: Required

Data Type: Double

The interest rate per period.

per

Use: Required

Data Type: Double

The period for which a payment is to be computed.

nper

Use: Required

Data Type: Double

The total number of payment periods.

pv

Use: Required

Data Type: Double

The present value of a series of future payments.

fv

Use: Optional

Data Type: Double

The future value or cash balance after the final payment. If omitted, the default value is 0.

due

Use: Optional

Data Type: DueDate enumeration

A value indicating when payments are due. DueDate.EndOfPeriod (or 0) indicates that
payments are due at the end of the payment period; DueDate.BegOfPeriod (or 1) indicates
that payments are due at the beginning of the period. If omitted, the default value is
DueDate.EndOfPeriod.

Return Value

A Double representing the interest payment

 409

Description

Computes the interest payment for a given period of an annuity based on periodic, fixed payments and
a fixed interest rate. An annuity is a series of fixed cash payments made over a period of time. It can
be either a loan payment or an investment.

Rules at a Glance

• The value of per can range from 1 to nper.
• If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.

Example

The ComputeSchedule function accepts a loan amount, an annual percentage rate, and a number of
payment periods. It uses the Pmt function to calculate the payment per period, then returns a two-
dimensional array in which each subarray contains the number of the period, the interest paid for that
period, and the principal paid for that period.

Private Function ComputeSchedule(dblAmount As Double, _
 dblRate As Double, dblNPer As Double) _
 As Object(,)

 Dim dblIPmt, dblPmt, dblPrincipal As Double
 Dim intPer As Integer
 Dim strFmt As String
 Dim objArray(,) As Object
 ReDim objArray(CInt(dblNPer), 2)

 strFmt = "###,###,##0.00"
 dblPmt = Pmt(dblRate / 12, dblNPer, -dblAmount, 0, 0)

 For intPer = 1 To CInt(dblNPer)
 dblIPmt = IPmt(dblRate / 12, intPer, dblNPer, -dblAmount)
 dblPrincipal = PPmt(dblRate / 12, intPer, dblNPer, _
 -dblAmount)
 dblAmount = dblAmount - dblPrincipal
 objArray(intPer, 0) = intPer & "."
 objArray(intPer, 1) = Format(dblIPmt, strFmt)
 objArray(intPer, 2) = Format(dblPrincipal, strFmt)
 Next

 ComputeSchedule = objArray

 End Function

Programming Tips and Gotchas

• rate and nper must be expressed in the same time unit. That is, if nper reflects the number
of monthly payments, rate must be the monthly interest rate.

• The interest rate is a percentage expressed as a decimal. For example, if nper is the total
number of monthly payments, an annual percentage rate (APR) of 12% is equivalent to a
monthly percentage rate of 1%. The value of rate is therefore .01.

See Also

 410

FV Function, NPer Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate
Function

IRR Function

Class

Microsoft.VisualBasic.Financial

Syntax
IRR(valuearray()[, guess])
valuearray()

Use: Required

Data Type: Array of Double

An array of cash flow values

guess

Use: Optional

Data Type: Double

Estimated value to be returned by the function

Return Value

A Double representing the internal rate of return

Description

Calculates the internal rate of return for a series of periodic cash flows (payments and receipts).

The internal rate of return is the interest rate generated by an investment consisting of payments and
receipts that occur at regular intervals. It is generally compared to a "hurdle rate," or a minimum return,
to determine whether a particular investment should be made.

Rules at a Glance

• valuearray must be a one-dimensional array that contains at least one negative value (a
payment) and one positive value (a receipt).

• Individual members of valuearray are interpreted sequentially. That is, valuearray(0) is
the first cash flow, valuearray(1) is the second, etc.

• If guess is omitted, the default value of 0.1 is used.
• IRR begins with guess and uses iteration to derive an internal rate of return that is accurate to

within 0.00001 percent. If IRR cannot do this within 20 iterations, the function fails.

 411

Programming Tips and Gotchas

• Each element of valuearray represents a payment or a receipt that occurs at a regular time
interval. If this is not the case, IRR will return erroneous results.

• If the function fails because it could not calculate an accurate result in 20 iterations, try a
different value for guess.

See Also

MIRR Function

Is Operator

Syntax
object1 Is object2
object1

Use: Required

Data Type: Object or any reference type

object2

Use: Required

Data Type: Object or any reference type

Return Value

Boolean

Description

Compares two object variables or reference variables to determine whether they reference the same
object

Rules at a Glance

• Both object1 and object2 must be reference-type variables. This includes string variables,
object variables, and array variables, for instance.

• The operation returns a result of True if the references are identical and False if they are not.
• It is also possible to determine whether an object contains a valid reference by replacing

object2 with the special Nothing keyword. For example:

If oDrive Is Nothing Then

• returns True if oDrive does not refer to an object and False if it does. This is the only
method that should be used to test for an uninitialized object reference.

 412

Programming Tips and Gotchas

• You can call the IsReference function to ensure that both object1 and object2 are
reference types.

• You may wonder why there is a special Is operator for reference types. When you perform a
comparison of scalar variables, you want to know if their values are the same. But in the case
of objects, you want to know if two references point to a single object. (Since many objects
have identical property values, a test for equal values is meaningless.) Hence, the Is operator
is used for this purpose.

• Typically, the Is operator is used in an If...Then...Else construct to take some action if
two reference-type variables are the same or if a reference type variable does not point to a
valid object.

• The Is operator reports that uninitialized reference types are equal. For instance, the Is
operator reports that all of the following are equal:

• Dim obj1 As Object
• Dim obj2 As Object
• If obj1 Is obj2 Then ' Evaluates to True
• Dim arrSt1() As String
• Dim arrSt2() As String
• If arrSt1 Is arrSt2 Then ' Evaluates to True
•
• Dim str1 As String
• Dim str2 As String

If str1 Is str2 Then ' Evaluates to True

VB .NET/VB 6 Differences

In VB .NET, strings and arrays are reference types. In VB 6, strings and arrays are not reference types
and, therefore, cannot be used with the Is operator.

IsArray Function

Class

Microsoft.VisualBasic.Information

Syntax
IsArray(varname)
varname

Use: Required

Data Type: Any variable

A variable that may be an array

Return Value

Boolean (True or False)

 413

Description

Tests whether an object variable points to an array

Rules at a Glance

If the variable passed to IsArray is an array or contains an array, True is returned; otherwise, IsArray
returns False.

Example

The following code displays True:

Dim s() As Integer = {1, 2}
Dim t As Object
t = s
MsgBox(IsArray(t))

Programming Tips and Gotchas

• Due to the nature of Objects, it is not always obvious if an Object variable contains an array,
especially if you have passed the variable to a function and the function may or may not have
attached an array to the variable. Calling the array function UBound or trying to access an
element in an array that does not exist will generate an error. In these situations, you should
first use the IsArray function to determine if you can safely process the array.

• An uninitialized array returns False. For example:
• Dim strArr() As String

Console.WriteLine(IsArray(strArr)) ' Returns False

• Array-like data structures, such as the Collection object, return False when passed to the
IsArray function.

VB .NET/VB 6 Differences

In VB 6, the IsArray function returns True when passed an uninitialized array. In VB .NET, it returns
False.

IsDate Function

Class

Microsoft.VisualBasic.Information

Syntax
IsDate(expression)
expression

Use: Required

 414

Data Type: Any

Expression containing a date or time

Return Value

Boolean indicating whether the expression can be converted to a Date

Description

Determines if an expression is of type Date or can be converted to type Date

Rules at a Glance

• Returns True if and only if expression is of type Date or can be converted to type Date.
• Uninitialized date variables also return True.

Programming Tips and Gotchas

• IsDate uses the locale settings of the current Windows system to determine if the value held
within the variable is recognizable as a date. Therefore, what is a legal date format on one
machine may fail on another.

• IsDate is particularly useful for validating data input. However, don't use IsDate in the VB text
box control's Change event. The Change event is fired with every keystroke, which means
that when the user starts to enter the date, chances are that the date will be invalid until the
point at which the user has completed the data entry.

IsDBNull Function

Class

Microsoft.VisualBasic.Information

Syntax
IsDBNull(expression)
expression

Use: Required

Data Type: Any expression

Return Value

Boolean

Description

Determines whether expression evaluates to DbNull (that is, is equal to System.DbNull.Value).

 415

Rules at a Glance

• DbNull is not the same as Nothing or an empty string. DbNull is used to denote the fact
that a variable contains a missing or nonexistent value, and it is used primarily in the context
of database field values.

• Since any expression that contains DbNull evaluates to DbNull, an expression such as:

If var = DbNull Then

will always fail. The only way to test for a DbNull value is to use IsDbNull.

VB .NET/VB 6 Differences

The IsDBNull function is new to VB .NET.

IsError Function

Class

Microsoft.VisualBasic.Information

Syntax
IsError(expression)
expression

Use: Required

Data Type: Object

An object variable that may be an Exception object

Return Value

Boolean (True if expression is an Exception object, False otherwise)

Description

Indicates whether an object is an instance of the Exception class or one of its derived classes

Example
Module modMain

Public Sub Main

Dim oUnk As Object = "This is an object of subtype String."
'Dim oUnk As Object = 10
Dim oResult As Object = Increment(oUnk)
If Not IsError(oResult) Then
 Console.WriteLine(oResult)

 416

Else
 Console.WriteLine(oResult.Message)
End If

End Sub

Public Function Increment(o As Object) As Object
 If IsNumeric(o) Then
 o += 1
 Return o
 Else
 Dim e As New System.InvalidOperationException
 Return e
 End If
End Function

End Module

VB .NET/VB 6 Differences

In VB 6, the IsError function takes a variant argument and determines if its subtype is vbError. Most
commonly, it is used with the CVErr function to determine if the value returned from a function is an
error. In VB .NET, the IsError function is used to test whether an object is an instance of the Exception
class or its derived classes.

See Also

Exception Class

IsNothing Function

Class

Microsoft.VisualBasic.Information

Syntax
IsNothing(expression)
expression

Use: Required

Data Type: Any

Return Value

Boolean

Description

Determines whether expression evaluates to Nothing. The line:

 417

If IsNothing(obj) Then

is equivalent to:

If obj Is Nothing Then

VB .NET/VB 6 Differences

The IsNothing function is new to VB .NET.

IsNumeric Function

Class

Microsoft.VisualBasic.Information

Syntax
IsNumeric(expression)
expression

Use: Required

Data Type: Any expression

Return Value

Boolean

Description

Determines whether expression can be evaluated as a number

Rules at a Glance

If the expression passed to IsNumeric evaluates to a number, True is returned; otherwise, IsNumeric
returns False.

Programming Tips and Gotchas

If expression is a date or time, IsNumeric evaluates to False.

IsReference Function

Class

 418

Microsoft.VisualBasic.Information

Syntax
IsReference(expression)
expression

Use: Required

Data Type: Any

Return Value

Boolean

Description

Returns True if expression contains reference type data, as opposed to value type data.

Rules at a Glance

• IsReference returns False if expression is one of the value data types (Byte, Short, Integer,
Long, Single, Double, Boolean, Date, or Char).

• IsReference returns True if expression is a reference data type (String or Object), including
an object of a specific type, such as a Collection object.

• IsReference returns True if expression is an array, since an array is a reference type.
• IsReference returns False if expression is a structure, since a structure is a value type.

Example
Private Class CEmployee
...
End Class

' The following message will display
Dim obj As Object
If IsReference(obj) Then
 MsgBox("obj is reference type, but is Nothing")
End If

' The following message will display
' (CEmployee is a class module)
Dim c As New CEmployee()
If IsReference(c) Then
 MsgBox("c is reference type")
End If

' The following message does NOT display
Dim i As Integer = 4
If IsReference(i) Then
 MsgBox("Integer is reference type")
End If

Programming Tips and Gotchas

 419

Just because a variable has been declared to be of type Object does not mean that the IsReference
function will return True when that variable is passed to it as an argument. Consider the following
code:

Dim oObj As Object
Console.WriteLine(IsReference(oObj)) 'Returns True

oObj = New CEmployee
Console.WriteLine(IsReference(oObj)) 'Returns True

oObj = 3
Console.WriteLine(IsReference(oObj)) 'Returns False

oObj = "This is a string"
Console.WriteLine(IsReference(oObj)) 'Returns True

In other words, the IsReference function returns True only if a variable of type Object is Nothing or if
its data subtype is one of the reference types (that is, an instance of a class or a string). If its data
subtype is a value type, the function returns False.

VB .NET/VB 6 Differences

The IsReference function is new to VB .NET.

Join Function

Class

Microsoft.VisualBasic.Strings

Syntax
result = Join(sourcearray, [delimiter])
sourcearray

Use: Required

Data Type: String or Object array

Array whose elements are to be concatenated

delimiter

Use: Optional

Data Type: String

Character used to delimit the individual values in the string

Return Value

String

 420

Description

Concatenates an array of values into a delimited string using a specified delimiter

Rules at a Glance

• If no delimiter is specified, the space character is used as a delimiter.
• If you want to concatenate numeric or other nonstring values in sourcearray, use an Object

array. If, for example, you specify a numeric data type for sourcearray, the function will
generate a compiler error.

Programming Tips and Gotchas

The Join function is ideal for quickly and efficiently writing out a comma-delimited text file from an
array of values.

Kill Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
Kill(pathname)
pathname

Use: Required

Data Type: String

The file or files to be deleted

Description

Deletes a file from disk

Rules at a Glance

• If pathname does not include a drive letter, the folder and file are assumed to be on the
current drive.

• If pathname does not include a folder name, the file is assumed to be in the current folder.
• You can use the multiple-character (*) and single-character (?) wildcards to specify multiple

files to delete.
• If the file is open or is set to read only, an error will be generated.

Programming Tips and Gotchas

 421

• Note that the deleted file is not placed in the Recycle Bin. However, the following code
demonstrates how to use the FileOperation API found in Shell32.DLL to move a file to the
Windows Recycle Bin:

• Option Explicit
• 'declare the file operation structure
• Type SHFILEOPSTRUCT
• hWnd As Long
• wFunction As Long
• pFrom As String
• pTo As String
• fFlags As Integer
• fAborted As Boolean
• hNameMaps As Long
• sProgress As String
• End Type
• 'declare two constants needed for the delete operation
• Private Const FO_DELETE = &H3
• Private Const FO_FLAG_ALLOWUNDO = &H40
• 'declare the API call function
• Declare Function SHFileOperation Lib "shell32.dll" _
• Alias "SHFileOperationA" _
• (lpFileOp As SHFILEOPSTRUCT) As Long
• Public Function WinDelete(sFileName As String) As Long
• 'create a copy of the file operation structure
• Dim SHFileOp As SHFILEOPSTRUCT
• 'need a Null terminated string
• sFileName = sFileName & vbNullChar
• 'assign relevant values to structure
• With SHFileOp
• .wFunction = FO_DELETE
• .pFrom = sFileName
• .fFlags = FO_FLAG_ALLOWUNDO
• End With
•
• 'pass the structure to the API function
• WinDelete = SHFileOperation(SHFileOp)
•

End Function

• Use the RmDir procedure to delete folders.

See Also

RmDir Procedure

LBound Function

Class

 422

Microsoft.VisualBasic.Information

Syntax
LBound(array[, rank])
array

Use: Required

Data Type: Any array

An array whose lower bound is to be determined

rank

Use: Optional

Data Type: Integer

The dimension whose lower bound is desired

Return Value

An Integer whose value is 0

Description

Determines the lower boundary of a specified dimension of an array. The lower boundary is the
smallest subscript you can access within the specified array.

Rules at a Glance

• Unless it is passed an invalid argument, the LBound function always returns 0.
• If array is uninitialized, it generates an ArgumentNullException error when passed to the

LBound function. You can prevent this by comparing array to Nothing, as in the following
code fragment:

If Not oArray Is Nothing Then

• To determine the lower limit of the first dimension of an array, set rank to 1, set it to 2 for the
second, and so on.

• If rank isn't specified, 1 is assumed.

Programming Tips and Gotchas

Since VB .NET does not allow you to change the lower bound of an array, the LBound function would
appear to be superfluous except for reasons of backward compatibility. Its continued use may be a
good idea, though, in the event that a future version of VB .NET allows you to set the lower boundary
of an array.

VB .NET/VB 6 Differences

 423

Since VB 6 offers a number of ways to set the lower bound of all arrays or a specific array, the LBound
function is particularly useful when iterating the elements of an array. In VB .NET, its use is a matter of
choice.

See Also

UBound Function

LCase Function

Class

Microsoft.VisualBasic.Strings

Syntax
LCase(value)
value

Use: Required

Data Type: String or Char

A valid string expression or a character

Return Value

String or Char

Description

Converts a string to lowercase

Rules at a Glance

• LCase only affects uppercase letters; all other characters in value are unaffected.
• LCase returns Nothing if value contains a Nothing.
• LCase returns the same data type as value.

See Also

UCase Function

Left Function

Class

 424

Microsoft.VisualBasic.Strings

Syntax
Left(str, length)
str

Use: Required

Data Type: String

The string to be processed

length

Use: Required

Data Type: Long

The number of characters to return from the left of the string

Return Value

String

Description

Returns a string containing the leftmost length characters of str

Rules at a Glance

• If length is 0, a zero-length string ("") is returned.
• If length is greater than the length of str, str is returned.
• If string is Nothing, Left returns Nothing.

Programming Tips and Gotchas

• Use the Len function to determine the overall length of str.
• The Left function corresponds to the BCL System.String class' Substring method. For example,

the following two assignments to the sCity variable are functionally identical:
• Dim sCity As String
• Dim sLocation As String = "New York, New York"
• sCity = Left(sLocation, 8)

sCity = sLocation.Substring(0, 8)

Note that the Substring method uses a zero-based index to determine the starting position of
the substring.

See Also

Mid Function, Right Function

 425

Len Function

Class

Microsoft.VisualBasic.Strings

Syntax
Len(expression)
expression

Use: Required

Data Type: Any

Any valid variable name or expression

Return Value

Integer

Description

Counts the number of characters within a string or the size of a given variable

Rules at a Glance

• If expression contains Nothing, Len returns 0.
• For a string or String variable, Len returns the number of characters in the string.
• For a nonobject and nonstructure variable, Len returns the number of bytes required to store

the variable in memory.
• For a variable of type Object, Len returns the length of its data subtype. If the object is

uninitialized, its length is 0. However, if the object contains a strongly typed class instance, an
InvalidCastException exception is thrown.

• For a structure, Len returns the number of bytes required to store the structure as a file. (But
see the comment in Programming Tips and Gotchas.)

• For a strongly typed object variable, such as one defined by the Class... End Class
construct, Len generates an InvalidCastException exception.

• If varname is an array, you must also specify a valid subscript. In other words, Len cannot be
used to determine the total number of elements in or the total size of an array.

Programming Tips and Gotchas

• Len cannot accurately report the number of bytes required to store structures that contain
variable-length strings. If you need to know how many bytes of storage space will be required
by a structure that includes string members, you can fix the length of the strings by using the
<vbFixedString(length)> attribute in the Structure statement. For details, see the
"Structure Statement" entry.

• Len is functionally similar to the BCL's System.String.Length public instance method. One
significant difference is that Len retuns a 0 in the case of an uninitialized String variable,
whereas the Length method raises a NullReferenceException exception. In addition, of course,

 426

the Length method can be used only on strings, whereas Len can be used on all data types
other than strongly typed objects.

Like Operator

Syntax
result = string Like pattern
string

Use: Required

Data Type: String

The string to be tested against pattern

pattern

Use: Required

Data Type: String

A series of characters used by the Like operator to determine if string and pattern match

Return Type

Boolean

Description

If string matches pattern, result is True; otherwise, result is False.

Rules at a Glance

• If either string or pattern is Nothing, then result will be Nothing.
• The default comparison method for the Like operator is Binary. This can be overridden using

the Option Compare statement.
• Binary comparison is based on comparing the internal binary number representing each

character; this produces a case-sensitive comparison.
• Text comparison, the alternative to binary comparison, is case insensitive; therefore, A = a.
• The sort order is based on the code page currently being used, as determined by the

Windows regional settings.
• The following table describes the special characters to use when creating a pattern; all other

characters match themselves.

Character Meaning
? Any single character
* Zero or more characters
Any single digit (0-9)
[list] Any single character in list

 427

[!list] Any single character not in list
[] A zero-length string ("")

• list is used to match a group of characters in pattern to a single character in string and
can contain almost all available characters, including digits.

• Use a hyphen (-) in list to create a range of characters to match a character in string. For
example, [A-D] will match A, B, C, or D in that character position in string.

• Multiple ranges of characters can be included in list without the use of a delimiter. For
example, [A-D J-L].

• Ranges of characters should appear in sort order. For example, [c-k].
• Use the hyphen at the start or end of list to match to itself. For example, [- A-G] matches

a hyphen or any character from A to G.
• The exclamation point in pattern matching is like the negation operator in C. Use an

exclamation point before a character or range of characters in list to match all but that
character. For example, [!A-G] matches all characters apart from the characters from A to G.

• The exclamation point outside of the bracket matches itself.
• To use any special character as a matching character, you should enclose the special

character in brackets. For example, to match to a question mark, use [?].

Example

The following example will display OK if the text entered into Text1 starts with either V or A, followed by
any characters, and ends with "in a Nutshell." Therefore, "Paul in a Nutshell" returns Wrong, whereas
either "ASP in a Nutshell" or "VB .NET Language in a Nutshell" returns OK.

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim sTitle As String = "in a Nutshell"
 Dim sPattern As String = "[V A]* " & sTitle
 If TextBox1.Text Like sPattern Then
 MsgBox("OK")
 Else
 MsgBox("Wrong")
 End If
End Sub

Programming Tips and Gotchas

• Different languages place different priority on particular characters with relation to sort order.
Therefore, the same program using the same data may yield different results when run on
machines in different parts of the world, depending upon the locale settings of the systems.

• Regular expressions provide an even more powerful method for searching and comparing
strings. You can use regular expressions through the .NET Framework's
System.Text.RegularExpressions.RegEx class.

LineInput Function

Class

Microsoft.VisualBasic.FileSystem

 428

Syntax
LineInput(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number

Return Value

A String containing the line read from the file

Description

Assigns a single line from a sequential file opened in Input mode to a string variable

Rules at a Glance

• Data is read into a buffer one character at a time until a line feed or carriage-return sequence
(either Chr(13) or Chr(13)+Chr(10)) is encountered. When this happens, all the
characters in the buffer are returned as a string, without the carriage-return sequence, and the
buffer is cleared.

• After reading a line, the file pointer advances to the first character after the end of the line or to
the end-of-file marker.

Example

The following code reads all of the lines in a text file and sends them to the Output window:

Dim fr As Integer = FreeFile()
Dim sLine As String
FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read)
Do While Not EOF(fr)
 Debug.WriteLine(LineInput(fr))
Loop
FileClose(fr)

Programming Tips and Gotchas

You use the LineInput function to read data from text files. To write data back to this type of file, use
the PrintLine function.

VB .NET/VB 6 Differences

The VB .NET LineInput function corresponds directly to the VB 6 LineInput statement, with the
following differences.

• The VB 6 LineInput statement has a second argument, varname, which is the variable to
receive the line read by the function. It is not supported by the VB .NET LineInput function,
since the line read is the return value of the function.

• The first argument of the VB 6 LineInput statement, filenumber, could be preceded by
the # symbol. In VB .NET, this format is not supported.

 429

Loc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
Loc(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number

Return Value

A Long indicating the current position of the read/write pointer in a file

Description

Determines the current position of the file read/write pointer

Rules at a Glance

• If you have opened the file in Random mode, Loc returns the record number of the last record
read or written.

• If you have opened the file in Input or Output modes (sequential), Loc returns the current byte
position in the file divided by 128.

• If you have opened the file in Binary mode, Loc returns the position of the last byte read or
written.

Example
Dim fr As Integer = FreeFile()
Dim sChar As Char
FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

Do While Loc(fr) < LOF(fr)
 FileGet(fr, sChar)
 Debug.Write(Loc(fr) & ": ")
 Debug.WriteLine(sChar)
Loop

Programming Tips and Gotchas

• For sequential files, the return value of Loc is not required and should not be used.
• Note that you cannot set the position of the file pointer using Loc.

See Also

 430

FileOpen Procedure, LOF Function

Lock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
Lock(filenumber[, record]

or:

Lock(filenumber[, fromrecord,torecord]
filenumber

Use: Required

Data Type: Integer

Any valid file number

record

Use: Optional

Data Type: Long

The record or byte number at which to commence the lock

fromrecord

Use: Optional

Data Type: Long

The first record or byte number to lock

torecord

Use: Optional

Data Type: Long

The last record or byte number to lock

Description

The Lock procedure prevents another process from accessing a record, section, or whole file until it is
unlocked by the Unlock function.

 431

Use the Lock procedure in situations where multiple programs or more than one instance of your
program may need read and write access to the same data file.

Rules at a Glance

• Use the Lock procedure with only the filenumber argument to lock the whole file.
• record is interpreted as a record number in the case of random files and a byte number in

the case of binary files. Records and bytes in a file are always numbered sequentially from 1
onward.

• To lock a particular record, specify its record number as record, and only that record will be
locked.

• The Lock procedure locks an entire file opened in Input or Output (sequential) mode,
regardless of the record argument.

• If you omit the start argument, Lock will lock all records from the start of the file to record or
byte number end.

• Attempting to access a locked file or portion of a file returns runtime error 70, "Permission
denied."

Programming Tips and Gotchas

• You must take care to remove all file locks with the Unlock procedure before either closing a
file or ending the application; otherwise, you can leave the file in an unstable state. This of
course means that, where appropriate, your error-handling routines must be made aware of
any locks you currently have in place so that they may be removed if necessary.

• You use the Lock and Unlock procedures in pairs, and the argument lists of both statements
must match exactly.

• The Lock procedure does not guarantee under all circumstances that the locked file will be
protected from access by other processes. There are two major circumstances under which
an apparent access violation can occur:

o The file has already been opened but has not been locked by a process when the
current process locks it. However, the first process will not be able to perform
operations on the file once the second file successfully locks it.

o The block of code responsible for opening the file and then locking it is interrupted by
the scheduling policy of the operating system before the file can be locked. If a
second process then opens and locks the file, it—and not the first process—will have
sole use of the file.

Because of this, the Lock procedure should immediately follow the FileOpen procedure in
code. This reduces, but does not eliminate, the problems that result from the fact that opening
and locking a file is not an atomic operation.

VB .NET/VB 6 Differences

In the VB 6 Lock statement, you can separate the fromrecord and torecord arguments with the
To keyword. In the VB .NET Lock procedure, this syntax is not supported.

See Also

Unlock Procedure

LOF Function

 432

Class

Microsoft.VisualBasic.FileSystem

Syntax
LOF(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number

Return Value

Long Integer

Description

Returns the size of an open file in bytes

Rules at a Glance

filenumber must be the number of a file opened using the FileOpenfunction.

Example

The following example shows how to use the LOF function to prevent reading past the end of a file in
binary mode:

Dim fr As Integer = FreeFile()
Dim sChar As Char
FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

Do While Loc(fr) < LOF(fr)
 FileGet(fr, sChar)
 Debug.Write(Loc(fr) & ": ")
 Debug.WriteLine(sChar)
Loop

Programming Tips and Gotchas

LOF works only on an open file; if you need to know the size of a file that isn't open, use the FileLen
function.

See Also

FileLen Function, FileOpen Procedure

Log Function

 433

Class

System.Math

Syntax
Math.Log(d)

or:

Math.Log(a, newbase)
d or a

Use: Required

Data Type: Double

A numeric expression greater than zero

newbase

Use: Required

Data Type: Double

The base of the logarithm

Return Value

Double

Description

Returns the natural (base e) logarithm of a given number (the first syntax) or the logarithm of a given
number in a specified base (the second syntax)

Rules at a Glance

• The natural logarithm is the logarithm base e, a constant whose value is approximately
2.718282. The natural logarithm satisfies the equation:

e^Log(x) = x

In other words, the natural logarithm function is the inverse function of the exponential function.

• d or a, the value whose natural logarithm the function is to return, must be a positive real
number. If number is negative or zero, the function generates runtime error 5, "Invalid
procedure call or argument."

• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

 434

• You can calculate base-n logarithms for any number, x, by dividing the natural logarithm of x
by the natural logarithm of n, as the following expression illustrates:

Logn(x) = Log(x) / Log(n)

For example, the Log10 function shows the source code for a custom function that calculates
base-10 logarithms:

Static Function Log10(X)
 Log10 = Log(X) / Log(10#)
End Function

• The inverse trigonometric functions, which are not intrinsic to VB, can be computed using the
value returned by the Log function. The functions and their formulas are:

Inverse hyperbolic sine

HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse hyperbolic cosine

HArccos(X) = Log(X + Sqr(X * X - 1))

Inverse hyperbolic tangent

HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse hyperbolic secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse hyperbolic cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse hyperbolic cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

See Also

Exp Function, Log10 Function

Log10 Function

Class

System.Math

Syntax

 435

Math.Log10(d)
d

Use: Required

Data Type: Double

A numeric expression greater than zero

Return Value

Double

Description

Returns the common (base-10) logarithm of a given number

Rules at a Glance

• The common logarithm is the logarithm base-10. The common logarithm satisfies the equation:

10^Log10(x) = x

• d, the value whose common logarithm the function is to return, must be a positive real number.
If number is negative or zero, the function generates runtime error 5, "Invalid procedure call or
argument."

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Log10 function is new to the .NET platform.

See Also

Exp Function, Log Function

LTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax
LTrim(str)
str

Use: Required

Data Type: String

 436

A valid string expression

Return Value

String

Description

Removes any leading spaces from str

Rules at a Glance

• If str has no leading spaces, the function returns str unmodified.
• If str is Nothing, LTrim returns Nothing.

Programming Tips and Gotchas

It is unwise to create data relationships that rely on leading spaces, especially since most string-based
data types in relational database-management systems (like SQL Server and Access) automatically
remove leading spaces.

See Also

RTrim Function, Trim Function

Max Function

Class

System.Math

Syntax
Math.Max(val1, val2)
val1, val2

Use: Required

Data Type: Any

A numeric data type or expression

Return Value

Returns the maximum of val1 and val2, in the widest datatype of the two numbers

Description

Returns the maximum of val1 and val2

 437

Rules at a Glance

• If the two arguments do not have the same data type, then the narrower data type is cast to
the wider type. For instance, the line:

• Dim x As Integer = 5
• Dim y As Double = 454.8

MsgBox(Math.Max(x, y))

displays 454.8.

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Max function is new to the .NET Framework.

See Also

Min Function

Me Operator

Syntax
Me

Description

Represents a reference to the current class from within the class

Rules at a Glance

• Me is an explicit reference to the current object as defined by the Class...End Class
construct.

• Me corresponds to the C++ this operator.

Example

In this example, a class passes an instance of itself to a function outside the class by using the Me
operator.

Private Class CCounter

Private lCtr As Long = 1

Public ReadOnly Property Value
 Get
 Value = lCtr
 End Get
End Property

 438

Public Sub Increment()
 lCtr += 1
End Sub

Public Function ShowCount() As Long
 ShowCount = ShowObjectValue(Me)
End Function

End Class

Module modMain

Public Sub Main
 Dim oCtr = New CCounter
 oCtr.Increment
 oCtr.Increment
 MsgBox("Count: " & oCtr.ShowCount)
End Sub

Public Function ShowObjectValue(oObj As Object) AS Object
 ShowObjectValue = oObj.Value
End Function

End Module

Programming Tips and Gotchas

• The Me operator can't be used on the left side of an expression.
• Me is particularly useful when passing an instance of the current class as a parameter to a

routine outside the class.

See Also

MyClass Keyword

Mid Function

Class

Microsoft.VisualBasic.Strings

Syntax
Mid(str, start[, length])
str

Use: Required

Data Type: String

The expression from which to return a substring

start

 439

Use: Required

Data Type: Long

The starting position of the substring

length

Use: Optional

Data Type: Long

The length of the substring

Return Value

String

Description

Returns a substring of a specified length from a given string

Rules at a Glance

• If str contains Nothing, Mid returns Nothing.
• If start is greater than the length of str, a zero-length string is returned.
• If start is less than zero, runtime error 5, "Invalid procedure call or argument," is generated.
• If length is omitted or length is greater than the length of str, all characters from start to

the end of str are returned.

Example

The following example parses the contents of a textbox control (named txtString) and writes each
word to a list box (named lstWord). Note the use of the InStr function to determine the position of
either a space or a carriage return/line feed character combination—the two characters that can
terminate a word in this case:

Private Sub btnParse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnParse.Click

 Dim strString, strWord As String
 Dim intStart, intEnd, intStrLen, intCrLf As Integer
 Dim blnLines As Boolean

 lstWords.Items.Clear()
 intStart = 1
 strString = Trim(txtString.Text)
 intStrLen = Len(strString)
 intCrLf = InStr(1, strString, vbCrLf)
 If intCrLf Then blnLines = True

 lstWords.BeginUpdate()

 Do While intStart > 0

 440

 intEnd = InStr(intStart, strString, " ") - 1
 If intEnd <= 0 Then intEnd = intStrLen
 If blnLines And (intCrLf < intEnd) Then
 intEnd = intCrLf - 1
 intCrLf = InStr(intEnd + 2, strString, vbCrLf)
 If intCrLf = 0 Then blnLines = False
 lstWords.Items.Add(Mid(strString, intStart, _
 intEnd - intStart + 1))
 intStart = intEnd + 3
 Else
 lstWords.Items.Add(Mid(strString, intStart, _
 intEnd - intStart + 1))
 intStart = intEnd + 2
 End If
 If intStart > intStrLen Then intStart = 0
 Loop

 lstWords.EndUpdate()

End Sub

Programming Tips and Gotchas

• Use the Len function to determine the total length of str.
• Use InStr to determine the starting point of a given substring within another string.

See Also

Left Function, Mid Function, Right Function

Mid Statement

Syntax
Mid(target, start[, length]) = string
target

Use: Required

Data Type: String

The name of the string variable to be modified

start

Use: Required

Data Type: Long

The position within stringvar at which the replacement commences

length

 441

Use: Optional

Data Type: Long

The number of characters in stringvar to replace

string

Use: Required

Required: String

The string used to replace characters within stringvar

Description

Replaces a section of a string with characters from another string

Rules at a Glance

• If you omit length, as many characters of string as can fit into stringvar are used.
• If start + length is greater then the length of stringvar, string is truncated to fit in the

same space as stringvar. This means that the length of stringvar is not altered by the
Mid statement.

• If start is less than 0, runtime error 5, "Invalid procedure call or argument," occurs.

Programming Tips and Gotchas

• If string is Nothing, a runtime error occurs.
• VB includes the Replace function, which enhances the functionality of the Mid statement by

allowing you to specify the number of times the replacement is carried out in the same string.
• Because it is a statement, this version of Mid does not accept named arguments.
• As a statement, Mid is implemented by the compiler, rather than by the

Microsoft.VisualBasic.Strings class.

See Also

Mid Function

Min Function

Class

System.Math

Syntax
Math.Min(val1, val2)
val1, val2

 442

Use: Required

Data Type: Any numeric

A numeric data type or expression

Return Value

Returns the minimum of val1 and val2 in the widest data type of the two numbers

Description

Returns the minimum of val1 and val2, in the same data type as the numbers. See Rules at a
Glance for more detail.

Rules at a Glance

• If the two arguments do not have the same data type, then the narrower data type is cast to
the wider type. For instance, the code fragment:

• Dim x As Integer = 5
• Dim y As Double = 454.8

MsgBox(Math.Min(x, y))

displays 454.8 without error. The datatype returned by the function in this instance is a Double.

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Min function is new to the .NET Framework.

See Also

Max Function

Minute Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Minute(TimeValue)
TimeValue

Use: Required

Data Type: Date

 443

Date variable or literal date

Return Value

An Integer between 0 and 59, representing the minute of the hour

Description

Extracts the minute component from a given date/time expression

Rules at a Glance

• If TimeValue is not a valid date/time expression, the function generates runtime error 13,
"Type mismatch." To prevent this, use the IsDate function to check the argument before
calling the Minute function.

• If TimeValue contains Nothing, 0 is returned, so be careful here to check for Nothing.
• You can also use the DatePart function.

See Also

Hour Function, Second Function

MIRR Function

Class

Microsoft.VisualBasic.Financial

Syntax
MIRR(valuearray(), financerate, reinvestrate)
valuearray()

Use: Required

Data Type: Array of Double

An array of cash flow values

financerate

Use: Required

Data Type: Double

The interest rate paid as the cost of financing

reinvestrate

Use: Required

 444

Data Type: Double

The interest rate received on gains from cash investment

Return Value

A Double representing the modified internal rate of return

Description

Calculates the modified internal rate of return, which is the internal rate of return when payments and
receipts are financed at different rates

Rules at a Glance

• valuearray must be a one-dimensional array that contains at least one negative value (a
payment) and one positive value (a receipt). The order of elements within the array should
reflect the order in which payments and receipts occur.

• financerate and reinvestrate are percentages expressed as decimal values. For
example, 10% is expressed as 0.10.

Programming Tips and Gotchas

Each element of valuearray represents a payment or a receipt that occurs at a regular time interval.
If this is not the case, MIRR will return erroneous results.

See Also

IRR Function

MkDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
MkDir(path)
path

Use: Required

Data Type: String

The name of the folder to be created

Description

Creates a new folder

 445

Rules at a Glance

• If you omit the drive from path, a new folder will be created on the current drive.
• You can specify the drive by using either its local drive letter or its UNC name.
• path can either be a fully qualified path (i.e., a path from the drive's root directory to the

directory to be created) or a relative path (i.e., a path from the current directory).
• If the directory to be created by the MkDir procedure already exists, an IOException

exception is raised.

Programming Tips and Gotchas

• If your program is running on Windows NT, ensure that the logged-in user has the right to
create a folder on the specified drive prior to calling the MkDir procedure.

• VB does not automatically make the new folder the current folder after a call to MkDir. You will
need to call the ChDir procedure to do this.

• To remove a folder, use the RmDir procedure.
• Use CurDir to determine the current drive.

See Also

RmDir Procedure

Mod Operator

Syntax
result = number1 Mod number2
number1, number2

Use: Required

Data Type: Any

A numeric expression

Return Value

Returns the modulus

Description

Returns the modulus, that is, the remainder when number1 is divided by number2. This return value
is a non-negative integral data type.

Rules at a Glance

• Floating point numbers are rounded to integers before the division.
• If number1 or number2 is Nothing, then an error occurs.
• The Mod operator returns the data type of number1 and number2 if they are the same type,

or the widest data type of number1 and number2 if they are different.

 446

Example
MsgBox(10 Mod 3) ' returns 1

Module...End Module Statement

Syntax
accessmodifier Module modulename
 ' statements
End Module
accessmodifier

Use: Optional

Type: Keyword

One of the following keywords determine the visibility of the module:

Public

Makes the module visible to all applications

Friend

Makes the module visible throughout the project

modulename

Use: Required

Type: String literal

The name of the code module

Description

Defines a code block as a code module

Rules at a Glance

• If accessmodifier is omitted, the module is Public by default.
• modulename follows standard Visual Basic naming conventions and must be unique within its

assembly.
• statements can consist of the following:

o Constant and variable definitions
o Function and procedure definitions

Programming Tips and Gotchas

• Internally, code modules are implemented as classes. Their public variables are treated as
static fields, and their public functions and procedures are treated as static (shared) methods.

 447

This means that, particularly in the event of a naming conflict (where two routines in different
code modules have the same name), you can qualify the function or procedure with the name
of the module in which it resides. For example, if the SayHello procedure is found in a module
named modLibrary, it can be called as follows:

modLibrary.SayHello()

• If a code module is to contain a routine that serves as a program entry point, that routine must
be named Sub Main. It must also have Public scope.

VB .NET/VB 6 Differences

The statement is new to VB .NET. VB 6 placed each code module in a separate BAS file, which
rendered beginning and ending statements unnecessary. A single VB .NET file, on the other hand,
can contain multiple code modules and classes, thus necessitating the use of beginning and ending
statements.

See Also

Class Statement

Month Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Month(datevalue)
datevalue

Use: Required

Data Type: Date

Date variable or literal date

Return Value

An Integer between 1 and 12

Description

Returns an integer representing the month of the year of a given date expression

Rules at a Glance

If datevalue contains Nothing, Month returns Nothing.

 448

Programming Tips and Gotchas

• The validity of the date expression, as well as the position of the month element within the
date expression, is initially determined by the locale settings of the current Windows system.
However, some intelligence has been built into the Month function that surpasses the usual
comparison of a date expression to the current locale settings. For example, on a Windows
machine set to US date format (mm/dd/yyyy), the date "13/12/1998" would technically be
illegal. However, the Month function returns 12 when passed this date. The basic rule for the
Month function is that if the system-defined month element is outside legal bounds (i.e.,
greater than 12), the system-defined day element is assumed to be the month and is returned
by the function.

• Since the IsDate function adheres to the same rules and assumptions as Month, it can be
used to determine whether a date is valid before passing it to the Month function.

• Visual Basic also has a new MonthName function for returning the name of the month.
• You can also use the DatePart function.

See Also

Day Function, Year Function

MonthName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
MonthName month [, abbreviate]
month

Use: Required

Data Type: Integer

The ordinal number of the month, from 1 to 12

abbreviate

Use: Optional

Data Type: Boolean

A flag to indicate if an abbreviated month name should be returned

Return Value

String containing the name of the specified month

Description

 449

Returns the month name of a given month. For example, a month of 1 returns January or (if
abbreviate is True) Jan.

Rules at a Glance

The default value for abbreviate is False.

Example
Public Function GetMonthName(dat As Date) As String

Dim iMonth As Integer = Month(dat)
GetMonthName = MonthName(iMonth)

End Function

Programming Tips and Gotchas

• month must be an integer; it cannot be a date. Use DatePart("m", dateval) to obtain a
month number from a date.

• If month has a fractional portion, it is rounded before calling the MonthName function.
• MonthName with abbreviate set to False is the equivalent of Format(dateval,

"mmmm").
• MonthName with abbreviate set to True is the equivalent of Format(dateval, "mmm").

See Also

WeekdayName Function

MsgBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax
MsgBox(prompt[, buttons][, title])
prompt

Use: Required

Data Type: String

The text of the message to display in the message box dialog box

buttons

Use: Optional

Data Type: MsgBoxStyle enumeration

 450

The sum of the Button, Icon, Default Button, and Modality constant values

title

Use: Optional

Data Type: String

The title displayed in the title bar of the message box dialog box

Return Value

A MsgBoxResult enumeration constant indicating the button clicked by the user to close the
message box

Description

Displays a dialog box containing a message, buttons, and optional icon to the user. The action taken
by the user is returned by the function in the form of an enumerated constant.

Rules at a Glance

• prompt can contain approximately 1,000 characters, including carriage return characters
such as the built-in vbCrLf constant.

• If the title parameter is omitted, the name of the current application or project is displayed
in the title bar.

• If you omit the buttons argument, the default value is 0; that is, VB opens an application
modal dialog box containing only an OK button.

• The constants of the MsgBoxStyle enumeration can be added together to form a complete
buttons argument. The constants can be divided into the following groups:

Button Display Constants
Icon Display Constants
Default Button Constants
Modality Constants

• Only one constant from each group can be used to make up the overall buttons value.

Button Display Constants
Constant Value Buttons to display

MsgBoxStyle.OKOnly 0 OK only
MsgBoxStyle.OKCancel 1 OK and Cancel
MsgBoxStyle.AbortRetryIgnore 2 Abort, Retry, and Ignore
MsgBoxStyle.YesNoCancel 3 Yes, No, and Cancel
MsgBoxStyle.YesNo 4 Yes and No
MsgBoxStyle.RetryCancel 5 Retry and Cancel

Icon Display Constants
Constant Value Icon to display

MsgBoxStyle.Critical 16 Critical Message

MsgBoxStyle.Question 32 Warning Query

 451

MsgBoxStyle.Exclamation 48 Warning Message

MsgBoxStyle.Information 64 Information Message

Default Button Constants
Constant Value Default button

MsgBoxStyle.DefaultButton1 0 First button

MsgBoxStyle.DefaultButton2 256 Second button

MsgBoxStyle.DefaultButton3 512 Third button

MsgBoxStyle.DefaultButton4 768 Fourth button

Modality Constants
Constant Value Modality

MsgBoxStyle.ApplicationModal 0 Application

MsgBoxStyle.SystemModal 4096 System

Return Values

The following intrinsic constants can be used to determine the action taken by the user and represent
the value returned by the MsgBox function:

Constant Value Button clicked
MsgBoxResult.OK 1 OK
MsgBoxResult.Cancel 2 Cancel (or Esc key pressed)
MsgBoxResult.Abort 3 Abort
MsgBoxResult.Retry 4 Retry
MsgBoxResult.Ignore 5 Ignore
MsgBoxResult.Yes 6 Yes
MsgBoxResult.No 7 No

If the MsgBox contains a Cancel button, the user can press the Esc key and the function's return value
will be that of the Cancel button.

Programming Tips and Gotchas

• Application modality means that the user cannot access other parts of the application until a
response to the message box has been given. In other words, the appearance of the message
box prevents the application from performing other tasks or from interacting with the user
other than through the message box.

• System modality used to mean that all applications were suspended until the message box
was closed. However, with multitasking operating systems, such as Windows 95 and Windows
NT, this is not the case. Basically, the message box is defined to be a "Topmost" window that
is set to "Stay on Top," which means that the user can switch to another application and use it
without responding to the message box. But because the message box is the topmost window,
it will be positioned on top of all other running applications.

• Unlike its InputBox counterpart, MsgBox cannot be positioned on the screen. It is always
displayed in the center of the screen.

• If your application is to run out-of-process on a remote machine, you should remove all
MsgBox functions since they will not be displayed to the user, but instead will appear on the
monitor of the remote server!

• MsgBox should never be used in ASP.NET applications.

 452

VB .NET/VB 6 Differences

In VB 6, the MsgBox function has five parameters. The last two, helpfile (which specified the path
to a help file containing information about the error message) and context (which specified the help
context ID within helpfile), are optional. In VB .NET, these two parameters are not supported.

See Also

InputBox Function

MyBase Keyword

Syntax
MyBase

Description

Provides a reference to the base class from within a derived class. If you want to call a member of the
base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived class
also has a member of the same name.

Rules at a Glance

• MyBase will call through the chain of inherited classes until it finds a callable implementation.
For example, in the code:

• Public Class CTestClass
• ...
• End Class
•
• Public Class CTestClass2
• Inherits CTestClass
• Public Function ShowType() As Type
• Return Mybase.GetType
• End Function

End Class

the call to ShowType is eventually resolved as a call to Object.GetType, since all classes are
ultimately derived from the Object class.

• MyBase cannot be used to call Private class members.
• MyBase cannot be used to call base class members marked as MustOverride.

Programming Tips and Gotchas

 453

• MyBase is commonly used to call back into the overridden member from the member that
overrides it in the derived class.

• The MyBase keyword can be used to call the constructor of the base class to instantiate a
member of that class, as in:

MyBase.New(...)

VB .NET/VB 6 Differences

The MyBase keyword is new to VB .NET.

MyClass Keyword

Syntax
MyClass

Description

MyClass is a reference to the class in which the keyword is used.

Rules at a Glance

• When using MyClass (as opposed to Me) to qualify a method invocation, as in:

MyClass.IncSalary()

the method is treated as if it was declared using the NotOverridable keyword. Thus,
regardless of the type of the object at runtime, the method called is the one declared in the
class containing this statement (and not in any derived classes). The upcoming example
illustrates this difference between MyClass and Me.

• MyClass cannot be used with shared members.

Example

The following code defines a class, Class1, and a derived class, Class1Derived, each of which has an
IncSalary method.

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _
 As Single
 IncSalary = sSalary * CSng(1.1)
 End Function

 Public Sub ShowIncSalary(ByVal sSalary As Single)
 MsgBox(Me.IncSalary(sSalary))
 MsgBox(MyClass.IncSalary(sSalary))
 End Sub

End Class

 454

Public Class Class1Derived
 Inherits Class1
 Public Overrides Function IncSalary(ByVal sSalary As Single) As Single
 IncSalary = sSalary * CSng(1.2)
 End Function
End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()
Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1
c1var.ShowIncSalary(10000) ' Shows 11000, 11000

c1var = c2
c1var.ShowIncSalary(10000) ' Shows 12000, 11000

The first call to ShowIncSalary is made using a variable of type Class1 that refers to an object of type
Class1. In this case, both calls:

Me.ShowIncSalary
MyClass.ShowIncSalary

return the same value, because they both call IncSalary in the base class Class1.

However, in the second case, the variable of type Class1 holds a reference to an object of the derived
class Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas MyClass still
refers to the base class Class1 wherein the keyword MyClass appears. Thus:

Me.ShowIncSalary

returns 12000, whereas:

MyClass.ShowIncSalary

returns 10000.

VB .NET/VB 6 Differences

The MyBase keyword is new to VB .NET.

See Also

Me Operator

Namespace Statement

Syntax

 455

Namespace name
 component types
End Namespace
name

Use: Required

Data Type: String literal

The name of the namespace

component types

Use: Required

The elements that are being declared as part of the namespace, including Enums, Structures,
Interfaces, Classes, and Delegates

Description

Declares a namespace and specifies the items in the namespace

Rules at a Glance

• Namespaces are used in the .NET Framework as an organized method of exposing program
components to other programs and applications.

• Namespaces are always Public. However, the elements within a namespace can be Public,
Friend, or Private. Private members are available only within the namespace declaration.

• name, the namespace name, must be unique.

Now Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Now()

Return Value

A Date containing the current system date and time

Description

Returns the current date and time based on the system setting

Rules at a Glance

 456

• The date returned by Now takes the Windows General Date format based on the locale
settings of the local computer. The U.S. setting for General Date is mm/dd/yy hh:mm:ss.

• The Now property is read-only.

Example

The following example returns the date 10 days from today:

MsgBox(DateAdd(DateInterval.Day, 10, Now()))

Programming Tips and Gotchas

• It is often overlooked that workstations in a modern Windows environment are at the mercy of
the user! If your application relies on an accurate date and time setting, you should consider
including a line in the workstation's logon script to synchronize the time with one of the servers.
Many so-called bugs have been traced to a workstation that has had its date or time
incorrectly altered by the user. The following line of code, when added to the logon script of an
Windows NT 4.0 machine, will synchronize the machine's clock with that of a server called
NTSERV1:

net time \\NTSERV1 /set

• The Now property is often used to generate timestamps. However, for short-term timing and
intra-day timestamps, the Timer function, which returns the number of milliseconds elapsed
since midnight, affords greater accuracy.

• The Now property wraps the BCL's System.DateTime.Now shared property. As a result, calls
to the System.DateTime.Now property offer a slight performance improvement (about 20%)
over calls to the VB .NET Now property.

See Also

Today Property

NPer Function

Class

Microsoft.VisualBasic.Financial

Syntax
NPer(rate, pmt, pv [, fv [, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

pmt

 457

Use: Required

Data Type: Double

The payment to be made each period.

pv

Use: Required

Data Type: Double

The present value of the series of future payments or receipts.

fv

Use: Optional

Data Type: Double

The future value of the series of payments or receipts. If omitted, the default value is 0.

due

Use: Optional

Data Type: DueDate enumeration

A value indicating when payments are due. DueDate.EndOfPeriod (0) indicates that
payments are due at the end of the payment period; DueDate.BegOfPeriod (1) that
payments are due at the beginning of the period. If omitted, the default value is 0.

Return Value

A Double indicating the number of payments

Description

Determines the number of payment periods for an annuity based on fixed periodic payments and a
fixed interest rate

Rules at a Glance

• rate is a percentage expressed as a decimal. For example, a monthly interest rate of 1% is
expressed as 0.01.

• For pv and fv, cash paid out is represented by negative numbers; cash received is
represented by positive numbers.

Example

Typically, the amount of time required to repay credit-card debt is never explicitly stated. The following
program uses the NPer function to determine how much time is required to repay credit-card debt.

Private Sub HowLongToPay()

 458

Try

 Dim dblRate, dblPV, dblPmt As Double
 Dim lngNPer As Long

 dblPV = InputBox("Enter the Credit Card balance: ")
 dblPmt = InputBox("Enter the monthly payment: ")
 dblRate = InputBox("Enter the monthly interest rate (.xxxx): ")

 lngNPer = NPer(dblRate, -dblPmt, dblPV, 0, 1)

 MsgBox("Your credit card balance will be paid in " & _
 lngNPer & " months." & vbCrLf & "That's " & _
 Int(lngNPer / 12) & " years and " & _
 Math.Round(lngNPer Mod 12, 2) & " months.")

Catch e As System.Exception

 MsgBox("Unable to compute period because of error " & e.Message)

End Try

End Sub

Programming Tips and Gotchas

• Both rate and pmt must be expressed in the same time unit. That is, if pmt reflects the
monthly payment amount, rate must be the monthly interest rate.

• NPer is useful in calculating the number of payment periods required to repay a loan when the
monthly loan payment is fixed or when an approximate amount of a monthly payment is
known. In this case, pv reflects the amount of the loan, and fv is usually 0, reflecting the fact
that the loan is to be entirely repaid.

• NPer is useful in determining the length of time required to meet some future financial goal. In
this case, pv represents the current level of savings, and fv represents the desired level of
savings.

See Also

FV Function, IPmt Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate
Function

NPV Function

Class

Microsoft.VisualBasic.Financial

Syntax
NPV(rate, valuearray())
rate

Use: Required

 459

Data Type: Double

The discount rate over the period, expressed as a decimal

valuearray()

Use: Required

Data Type: Double

An array of cash flow values

Return Value

A Double specifying the net present value

Description

Calculates the net present value of an investment based on a series of periodic variable cash flows
(payments and receipts) and a discount rate.

The net present value is the value today of a series of future cash flows discounted at some rate back
to the first day of the investment period.

Rules at a Glance

• rate must be a percentage expressed as a decimal. For example, 10% is expressed as 0.10.
• values is a one-dimensional array that must contain at least one negative value (a payment)

and one positive value (a receipt).
• The NPV investment begins one period before the date of the first cash flow value and ends

with the last cash flow value in the array.
• NPV requires future cash flows. If the first cash flow occurs at the beginning of the first period,

the first value must be added to the value returned by NPV and must not be included in
values.

Programming Tips and Gotchas

• rate and the individual elements of values must reflect the same time period. For example,
if values reflects annual cash flows, rate must be the annual discount rate.

• Individual members of values are interpreted sequentially. That is, values(0) is the first
cash flow, values(1) is the second, etc.

• NPV is like the PV function, except that PV allows cash flows to begin either at the beginning
or the end of a period and requires that cash flows be fixed throughout the investment.

See Also

FV Function, IPmt Function, NPer Function, Pmt Function, PPmt Function, PV Function, Rate
Function

Oct Function

 460

Class

Microsoft.VisualBasic.Conversion

Syntax
Oct(number)
number

Use: Required

Data Type: Numeric or string capable of conversion to a number

A valid numeric or string expression

Return Value

String

Description

Returns the octal value of a given number

Rules at a Glance

• If number is not already a whole number, it is rounded to the nearest whole number before
being evaluated.

• If number is Nothing, an error occurs.
• Oct returns up to 11 octal characters.

Programming Tips and Gotchas

You can also use literals in your code to represent octal numbers by appending &O to the relevant
octal value. For example, 100 decimal has the octal representation &O144. The following two
statements assign an octal value to a variable:

lngOctValue1 = &H200 ' Assigns 128

lngOctValue2 = "&O" & Len(dblNumber) ' Assigns 8

See Also

Hex Function

On Error Statement

Syntax 1

 461

On Error GoTo label|0|-1
label

Use: Either label, 0, or -1 is required

A valid label within the subroutine

Syntax 2
On Error Resume Next

Description

Enables or disables error handling within a procedure.

If you don't use an On Error statement or a Try...Catch block in your procedure, or if you have
explicitly switched off error handling, the Visual Basic runtime engine will automatically handle the
error. First, it will display a dialog box containing the standard text of the error message, something
that many users are likely to find incomprehensible. Second, it will terminate the application. So any
error that occurs in the procedure will produce a fatal runtime error.

Rules at a Glance

Syntax 1

• The 0 argument disables error handling within the procedure until the next On Error
statement is executed.

• The -1 argument disables an enabled exception in the current procedure. (It resets the
exception to Nothing).

• The label argument specifies the label that defines an error-handling routine within the
current procedure. Should an error occur, the procedure will be branched to this error-handling
routine.

• A subroutine label must be suffixed with a colon. In addition, you cannot use a VB reserved
word for a subroutine label name. For example:

someroutine:

• label must be in the same procedure as the On Error statement.

Syntax 2

When a runtime error occurs, program execution continues with the program line following the line that
generated the error.

Programming Tips and Gotchas

• If you have no error handling in your procedure or if error handling is disabled, the VB runtime
engine will trace back through the call stack until a procedure is reached where error handling
is enabled. In that case, the error will be handled by that procedure. However, if no error
handler can be found in the call stack, a runtime error occurs, and program execution is halted.

• On Error Resume Next is useful in situations either where you are certain that errors will
occur or where the errors that could occur are minor. The following example shows how you
can quickly cycle through the controls on a form and set the Text property to an empty string
without checking what type of control you're dealing with. Of course, you are aware that many
of the controls don't have a text property, so that the attempt to access their Text property will

 462

generate an error. By using the On Error Resume Next statement, you force your program
to ignore this error and carry on with the next control.

• On Error Resume Next
• For Each Control In Me.Controls
• Control.Text = ""

Next

• Use of the On Error Resume Next statement should be kept to a minimum, since errors are
basically ignored and their occurrence is silent to the user. This means that, should an
unexpected error (that is, an error that you were not intending to handle when you chose to
ignore errors) occur or should your application behave unexpectedly, the job of finding and
correcting the cause of the error becomes almost impossible.

• The following is a template for error handling within your procedures using the On Error
statement:

• Sub/Function/Property Name ()
• On Error Goto Name_Err
• ... 'procedure code
•
• Name_Exit:
• ... 'tidying up code - such as Set Object = Nothing
• Exit Sub/Function/Property
• Name_Err:
• ... 'error handling code e.g. a MsgBox to inform the user
• Resume Name_Exit

End Sub/Function/Property

If cleanup code isn't required within the procedure, you can simplify the template by removing
the Name_Exit label and removing the Resume Name_Exit statement.

• If you are writing an error-handling routine for use within a class module or a DLL, you should
use the following template, which raises an error back to the client, thereby notifying the client
of the error and allowing the client to handle it:

• Sub/Function/Property Name ()
• On Error Goto Name_Err
• ... 'procedure code
•
• ... 'tidying up code - such as Set Object = Nothing
• Exit Sub/Function/Property
•
• Name_Err:
• ... 'error handling and tidying up code
• Err.Raise etc...
•

End Sub/Function/Property

• Errors that occur within an error handler are passed up the call chain. To illustrate this,
consider the following code:

• Public Function Test() As Integer
• On Error Goto Err_Test
• Dim iTest() As Integer = {1, 2}
• Test = iTest(3) ' error
• Exit Function
• Err_Test:
• MsgBox(iTest(4)) ' error

 463

• End Function
•
• Sub Test2()
• On Error Goto Err_Test2
• Test()
• Exit Sub
• Err_Test2:
• MsgBox("Error handled")

End Sub

When Test2 is run, the message "Error handled" is displayed. This indicates that the error that
occurs in the error handler of Test is passed to Test2.

• For more on both unstructured and structured error handling, see Chapter 7

VB .NET/VB 6 Differences

In VB 6, the label in On Error GoTo label can be either a label or a line number. In VB .NET, the
use of line numbers is not supported.

See Also

Err Object

OpenFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or opening a file.

The OpenFileDialog class has properties for setting the initial appearance and functionality of the file
dialog box, a property for returning the filename or names selected by the user, as well as a method
for showing the dialog box. An instance of the OpenFileDialog class does not itself open the file, but
instead provides the information that allows your code to do this programmatically.

Under VB, the most common use for this dialog box is to get the name of a file from the user, after
which we can use VB's functions to open that file.

An OpenFileDialog object can be instantiated as follows:

Dim oOpenDlg As New OpenFileDialog

 464

Selected OpenFileDialog Members

The following is a brief description of some of the more important members of the OpenFileDialog
class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is
automatically added to the Filename property if the user fails to enter an extension. Its default
value is True.

CheckFileExists property

Sets or retrieves a Boolean value indicating whether a warning message should be displayed
if the user enters the name of a file that does not exist. The default value is True.

DefaultExt property

Gets or sets a String that defines the default file extension. The string should consist of the file
extension only without a period.

FileName property

Returns a string that contains the fully qualified name (that is, complete path and filename) of
the file selected by the user. If no file is selected, the property returns an empty string.

FileNames property

Returns a String array that contains the fully qualified names (that is, complete paths and
filenames) of the files selected by the user. If no file is selected, the property returns an empty
array. Note that this property returns a single-element array if the Multiselect property is
False and the user selects a file.

Filter property

Gets or sets a String containing the current filter, which determines the items that appear in
the "Files of type" drop-down listbox. A single item consists of a file description, a vertical bar,
and the file extension (usually "*." plus the file extension). If there are multiple extensions in a
single item, they are separated by semicolons. If there are multiple items, they are separated
by vertical bars. For example, the following code fragment assigns a filter string to a String
variable:

sFilter = oFS.Filter="Text files (*.txt; *.vb)|*.txt;*.vb|" & _
 "Visual Basic files (*.vb)|*.vb|" & _
 "All files (*.*)|*.*"

FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter property
are selected. The index is one-based, rather than zero-based. When the dialog is first
displayed and no FilterIndex value is specified, it defaults to 1. When the method returns, its
value indicates which filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the OpenFileDialog dialog

 465

Multiselect property

Sets or retrieves a Boolean value indicating whether the user is allowed to select more than
one file.

OpenFile method

Opens the file selected by the user, returning a Stream object. The file is opened in read-only
mode. As Microsoft puts it: "The OpenFile method is used to provide a facility to quickly open
a file from the dialog box. The file is opened in read-only mode for security purposes. To open
a file in a read/write mode, you must use another call " (See the "ShowDialog Method"
entry.)

ReadOnlyChecked property

Sets or retrieves a Boolean value indicating whether the read-only check box is selected on
the dialog box.

RestoreDirectory property

Gets or sets a Boolean value indicating whether the current directory is restored before the
dialog closes. Its default value is False.

ShowDialog method

The OpenFileDialog class inherits from the FileDialog class, which in turn inherits from the
CommonDialog class. This class has a ShowDialog method that shows the dialog box. Once
the user has dismissed the dialog box, the FileDialog's FileName and FileNames properties
can be used to get the user's choice(s).

ShowReadOnly property

Sets or retrieves a Boolean value indicating whether the dialog box contains a read-only
checkbox.

Title property

Gets or sets a String value containing the title of the Open dialog box.

Example

The following code asks the user for one or more files and displays the filenames in the Output
window:

Dim fd As New OpenFileDialog()
Dim i As Integer
fd.Multiselect = True
If fd.ShowDialog() = DialogResult.OK Then
 For i = 0 To UBound(fd.FileNames)
 Debug.WriteLine(fd.FileNames(i))
 Next
End If

VB .NET/VB 6 Differences

 466

Whereas the OpenFileDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

Option Compare Statement

Syntax
Option Compare {Binary | Text}

Description

Used to set the default method for comparing string data

Rules at a Glance

• When Option Compare is not used in a module, the default comparison method is Binary.
• When Option Compare is used, it must appear at the start of the module's declarations

section, before any procedures.
• Binary comparison —the default text comparison method in Visual Basic—uses the internal

binary code of each character to determine the sort order of the characters. For example, "A"
< "a".

• Text comparison uses the locale settings of the current system to determine the sort order of
the characters. Text comparison is case insensitive. For example, "A" = "a".

Option Explicit Statement

Syntax

Option Explicit [On | Off]

Description

Use Option Explicit to generate a compile-time error whenever a variable that has not been
declared is encountered.

Rules at a Glance

• The Option Explicit statement must appear in the declarations section of a module before
any procedures.

• In modules where the Option Explicit statement is not used, any undeclared variables are
automatically cast as Objects.

• The default is Option Explicit On. In other words, the statement:

Option Explicit

is equivalent to:

 467

Option Explicit On

Programming Tips and Gotchas

• It is considered good programming practice to always use the Option Explicit statement.
The following example shows why:

• 1: Dim iVariable As Integer
•
• 2: iVariable = 100
• 3: iVariable = iVariable + 50

4: MsgBox iVariable

In this code snippet, an integer variable, iVariable, has been declared. However, because
the name of the variable has been mistyped in line 3, the message box shows its value as
only 50 instead of 150. This is because iVarable is assumed to be an undeclared variable
whose value is 0. If the Option Explicit statement had been used, the code would not
have compiled, and iVarable would have been highlighted as the cause.

• For an ASP.NET page, you use the @ PAGE directive rather than Option Explicit to
require variable declaration. Its syntax is:

<%@ Page Language="VB" Explicit=true|false %>

By default, Explicit is true in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to require variable
declaration for an entire virtual directory or ASP.NET application by adding an explicit attribute
to the compliation section. Its syntax is:

<compliation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to
Option Explicit Off.

Option Strict Statement

Syntax
Option Strict [On | Off]

Description

Option Strict prevents VB from making any implicit data type conversions that are narrowing since
narrowing conversions may involve data loss. For example:

Dim lNum As Long = 2455622
Dim iNum As Integer = lNum

converts a Long (whose value can range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807) to an Integer (whose value can range from 2,147,483,648 to
2,147,483,647). In this case, even though no data loss would result from the narrowing, Option

 468

Strict On would still not allow the conversion and would instead generate a compiler error. The
reasoning here is that, although particular narrowing operations may not lose data, there is always the
potential for data loss when working with variables—that is, with symbolic representations of numbers
whose values are allowed to vary.

Rules at a Glance

• If the Option Strict statement is not present in a module, Option Strict is Off.
• The default is Option Strict On. In other words, the statement:

Option Strict On

is equivalent to the statement:

Option Strict

• The Option Strict statement must appear in the declarations section of a module before
any code.

• Option Strict On disallows all implicit narrowing conversions.
• Option Strict On also causes errors to be generated for late binding, as well as for any

undeclared variables, since Option Strict On implies Option Explicit On.

Programming Tips and Gotchas

• Although the setting of Option Strict has no effect on BCL data types, BCL data types
disallow implicit narrowing conversions.

• Explicit narrowing conversions are not affected by Option Strict. However, if data loss
does occur as a result of an explicit conversion, an OverflowException exception is generated.

• One of the most commonly overlooked narrowing conversions is the use of "wider" arguments
in function, procedure, and method calls. Passing a Long to an Integer parameter, for example,
is an implicit narrowing conversion that Option Strict does not allow.

• In many cases, Option Strict On disallows seemingly "safe" conversions because it
interprets literal values in unexpected ways. For example, the statement

Dim decNum As Decimal = 10.32

generates a compiler error because 10.32 is interpreted as a Double, and implicit conversions
from Double to Decimal are not allowed. You can correct this compiler error with a statement
like:

Dim decNum As Decimal = 10.32D

• Setting Option Strict On is highly recommended.
• For an ASP.NET page, you use the @ Page directive rather than Option Strict to control

strict type checking. Its syntax is:

<%@ Page Language="VB" Strict=true|false %>

By default, Strict is false in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to control strict type
checking for an entire virtual directory or ASP.NET application by adding a strict attribute to
the compilation section. Its syntax is:

 469

<compilation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to
Option Explicit Off.

VB .NET/VB 6 Differences

The Option Strict setting is new to VB .NET.

See Also

Option Explicit Statement

Partition Function

Class

Microsoft.VisualBasic.Interaction

Syntax
Partition(number, start, stop, interval)
number

Use: Required

Data Type: Long

Number to evaluate against the intervals.

start

Use: Required

Data Type: Long

Start of the range. Must be non-negative.

stop

Use: Required

Data Type: Long

End of the range. Must be greater than start.

interval

Use: Required

 470

Data Type: Long

Size of each interval into which the range is partitioned.

Return Value

A String containing the range within which number falls

Description

Returns a string that describes which interval contains the number

Rules at a Glance

• start must be greater than or equal to 0.
• stop cannot be less than or equal to start.
• Partition returns a range formatted with enough leading spaces so that there are the same

number of characters to the left and right of the colon as there are characters in stop, plus
one. This ensures that the interval text will be handled properly during any sort operations.

• If number is outside of the range of start, the range reported is:

: (start - 1)

If number is outside the range of end, the range reported is:

(last_end_range + 1):

• If interval is 1, the range is number:number, regardless of the start and stop
arguments. For example, if interval is 1, number is 100, and stop is 1000, Partition
returns 100: 100.

• If any of its arguments are Null, Partition returns a Null.

Example

The code:

Dim i As Integer
For i = -1 To 110 \ 5
 Debug.WriteLine(CStr(i * 5) & " is in interval " & _
 Partition(i * 5, 0, 100, 10))
Next

produces the following output:

-5 is in interval : -1
0 is in interval 0: 9
5 is in interval 0: 9
10 is in interval 10: 19
15 is in interval 10: 19
20 is in interval 20: 29
25 is in interval 20: 29
30 is in interval 30: 39
35 is in interval 30: 39
40 is in interval 40: 49
45 is in interval 40: 49

 471

50 is in interval 50: 59
55 is in interval 50: 59
60 is in interval 60: 69
65 is in interval 60: 69
70 is in interval 70: 79
75 is in interval 70: 79
80 is in interval 80: 89
85 is in interval 80: 89
90 is in interval 90: 99
95 is in interval 90: 99
100 is in interval 100:100
105 is in interval 101:
110 is in interval 101:

Programming Tips and Gotchas

• The Partition function is useful in creating histograms, which give the number of integers from
a collection that fall into various ranges.

VB .NET/VB 6 Differences

• The Partition function is new to VB .NET.

Pi Field

Class

System.Math

Syntax
Math.PI

Return Value

A Double containing the approximate value of the irrational number pi

Description

This field returns the approximate value of the irrational number pi. In particular:

Math.PI = 3.14159265358979

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Pi field is new to VB .NET.

 472

See Also

E Field

Pmt Function

Class

Microsoft.VisualBasic.Financial

Syntax
Pmt(rate, nper, pv[, fv[, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

nper

Use: Required

Data Type: Double

The total number of payment periods.

pv

Use: Required

Data Type: Double

The present value of the series of future payments.

fv

Use: Optional

Data Type: Double

The future value or cash balance after the final payment.

due

Use: Optional

Data Type: DueDate enumeration

 473

A value indicating when payments are due. EndOfPeriod (0) indicates that payments are
due at the end of the payment period; BegOfPeriod (1) indicates that payments are due at
the beginning of the period. If omitted, the default value is 0.

Return Value

A Double representing the monthly payment

Description

Calculates the payment for an annuity based on periodic, fixed payments and a fixed interest rate. An
annuity can be either a loan or an investment.

Rules at a Glance

• rate is a percentage expressed as a decimal. For example, an interest rate of 1% per month
is expressed as 0.01.

• If fv is omitted, the default value of 0 (reflecting the complete repayment of a loan) is used.
• For pv and fv, cash paid out is represented by negative numbers; cash received is

represented by positive numbers.
• If due is omitted, the default value of 0 (reflecting payments at the beginning of each period) is

used.

Example

See the example for the IPmt Function entry.

Programming Tips and Gotchas

• rate and nper must be calculated using payment periods expressed in the same units. For
example, if nper reflects the total number of monthly payments, rate must be the monthly
interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate
Function

Pow Function

Class

System.Math

Syntax
result = Math.Pow(x, y)
x, y

 474

Use: Required

Data Type: Double

Return Value

A Double that is x (the base) raised to the power y (the exponent)

Description

This is a generalized exponential function; it returns the result of a number raised to a specified power.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Pow function is new to the .NET Framework.

See Also

Exp Function

PPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax
PPmt(rate, per, nper, pv[, fv[, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

per

Use: Required

Data Type: Double

The period for which a payment is to be computed.

nper

 475

Use: Required

Data Type: Double

The total number of payment periods.

pv

Use: Required

Data Type: Double

The present value of a series of future payments.

fv

Use: Optional

Data Type: Object

The future value or cash balance after the final payment. If omitted, the default value is 0.

due

Use: Optional

Data Type: DueDate enumeration

A value indicating when payments are due. It can be either DueDate.EndOfPeriod (or 0),
for payments due at the end of the period, or DueDate.BegOfPeriod (or 1), for payments
due at the beginning of the period. The default value is DueDate.EndOfPeriod.

Return Value

A Double representing the principal paid in a given payment

Description

Computes the payment of principal for a given period of an annuity, based on periodic, fixed payments
and a fixed interest rate. An annuity is a series of fixed cash payments made over a period of time. It
can be either a loan payment or an investment.

Rules at a Glance

• The value of per can range from 1 to nper.
• If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.
• If fv is omitted, its default value of 0 is used.
• If due is omitted, the default value of 0 (reflecting payments at the beginning of each period) is

used.

Example

 476

See the example for the IPmt Function entry.

Programming Tips and Gotchas

• rate and nper must be expressed in the same time unit. That is, if nper reflects the number
of monthly payments, rate must be the monthly interest rate.

• The interest rate is a percentage expressed as a decimal. For example, if nper is the total
number of monthly payments, an annual percentage rate (APR) of 12% is equivalent to a
monthly percentage rate of 1%. The value of rate is therefore .01.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, Rate
Function

Print, PrintLine Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax
Print(filenumber, [outputlist()])

PrintLine(filenumber, [outputlist()])
filenumber

Use: Required

Data Type: Integer

Any valid file number.

outputlist

Use: Optional

Type: Parameter Array

A comma-separated list of expressions to output to a file.

outputlist can be either a scalar variable, a list of comma-delimited expressions, or a
parameter array. Its comma-delimited expressions or parameter array can include the
following:

Spc(n)

Use: Optional

Insert n space characters before expression.

 477

Tab(n)

Use: Optional

Position the insertion point either at the next print zone (by omitting n) or at column number
(n).

expression

Use: Optional

Data Type: Any

The data expression to output.

Description

Outputs formatted data to a disk file opened for Append or Output.

Rules at a Glance

• Print and PrintLine are identical, except that PrintLine advances to the next line after printing.
• The Tab(n) argument does not actually insert any tab characters (Chr(9)); instead, it fills

the space from the end of the last expression to column n (or to the start of the next print zone)
with space characters.

• The Print procedure uses the locale settings of the current system to format dates, times, and
numbers, using the correct separators.

• outputlist can be either a comma-separated list of expressions or a parameter array.

Example

The following code shows how to use the Print procedure to write to a file using both a comma-
separated list of arguments and a parameter array:

Dim sInput As String
Dim iFile As Integer = FreeFile()
Dim iNum As Integer
Dim oOutput(1) As Object
FileOpen(iFile, "C:\dataprex.txt", openmode.append)
Do
 sInput = InputBox("Enter name: ")
 if sInput = "" Then Exit Do
 Print(iFile, sInput)

 iNum = Len(sInput)
 sInput = InputBox("Enter street address: ")
 oOutput(0) = spc(25 - iNum)
 oOutput(1) = sInput
 Print(iFile, oOutput)

 iNum += Len(sInput)
 sInput = InputBox("Enter city: ")
 PrintLine(iFile, spc(40 - iNum), sInput)
Loop While Not sInput = ""

FileClose(iFile)

 478

Programming Tips and Gotchas

You may find that sequential data files written using the Print procedure are misinterpreted by the
Input function. For heavily structured sequential data, you may get better results with the Write
procedure, which ensures that all fields are correctly delimited.

VB .NET/VB 6 Differences

• In VB 6, the Print statement requires a # symbol in front of filenumber. In VB .NET, this
usage is not supported.

• In VB 6, the final argument in outputlist, charpos, allows you to specify the starting
character position of the next output. In VB .NET, however, this argument is not supported.

See Also

FileOpen Procedure

Private Statement

Syntax
Private [WithEvents] varname[([subscripts])] [As [New] _
 type] [, [WithEvents] varname[([subscripts])] _
 [As [New] type]] . . .
WithEvents

Use: Optional

Type: Keyword

A keyword that denotes the object variable, varname, can respond to events triggered from
within the object to which it refers.

varname

Use: Required

Data Type: Any

The name of the variable, following Visual Basic naming conventions.

subscripts

Use: Optional

Data Type: Integer or Long

Denotes varname as an array and specifies the number and extent of array dimensions.

New

 479

Use: Optional

Type: Keyword

Used to automatically create an instance of the object referred to by the object variable,
varname.

type

Use: Optional

Type: Keyword

Data type of the variable varname.

Description

Used at module level to declare a private variable and allocate the relevant storage space in memory.
Private can also be used with procedures and class modules.

Rules at a Glance

• A Private variable's scope is limited to the module in which it is created.
• WithEvents is only valid when used to declare an object variable. The WithEvents

keyword informs VB that the object being referenced exposes events. When you declare an
object variable using WithEvents, an entry for the object variable is placed in the code
window's Object List, and a list of the events available to the object variable is placed in its
Procedures List. You can then write code in the object variable's event handlers in the same
way you write other more common event handlers.

• There is no limit to the number of object variables that can refer to the same object using the
WithEvents keyword; they will all respond to that object's events.

• You cannot create an array variable that uses the WithEvents keyword.
• The New keyword cannot be used in the same object-variable declaration as WithEvents.

This is because WithEvents is designed to trap event notifications that would ordinarily be
inaccessible to a Visual Basic program. Consequently, WithEvents can only be used when
defining an instance of an existing object.

• The subscripts argument has the following syntax:

upperbound [, upperbound]

For example:

Private strNames(10, 15)

defines a two-dimensional array with 11 elements in the first coordinate and 16 elements in
the second coordinate. Thus, the first element is strNames(0,0), and the last element is
strNames(10,15).

• Using the subscripts argument, you can declare up to 60 multiple dimensions for the array.
• To declare an array with no specified size, use commas with no integers between them, as in:
• Private sNames()

Private sThings(,)

You can set or change the number of elements of an array using the ReDim statement.

 480

• The New keyword is used only when declaring an object variable. For example:
• Private oEmployee As Employee

oEmployee = New Employee

or:

Private oEmployee As New Employee

• The New keyword can only be used with early-bound objects.
• datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long,

Object, Short, Single, String, a user-defined type, or an object type.

Programming Tips and Gotchas

• All variables created at procedure level are Private by default. That is, they do not have
scope outside of the procedure in which they are created.

• A new type of scope was introduced in Visual Basic 5.0. The Friend scope is halfway
between Public and Private. It is useful in situations where Private is too restricting and
Public is too open. For more information, refer to the "Friend Statement" entry.

• You should note that when you use the New keyword to declare an object variable, its class
constructor is fired when the object variable is declared.

• The WithEvents keyword cannot be used with local variables whose scope is limited to a
function or procedure.

VB .NET/VB 6 Differences

• In VB 6, the subscripts argument takes the form:

[lowerbound To] upperbound [, [lowerbound To] upperbound]

• VB .NET, however, does not allow you to set the lower bound of an array.
• In VB 6, an array whose number of elements are declared in advance is a fixed array; it

cannot be redimensioned. In VB .NET, all arrays are dynamic and can be redimensioned.
• In VB .NET, variables declared with the New keyword on the same line as the Private

statement are no longer created when their first reference is encountered. Hence, whereas in
VB 6, declaring an object variable using a statement such as:

Dim oObj As New MyApp.SomeObject

could interfere with object destruction, in VB .NET this is not the case.

• In VB 6, the type argument can be Currency. The Currency data type, however, is not
supported by VB .NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

Property Statement

 481

Syntax

[Public|Private|Friend] [Default | ReadOnly| WriteOnly] _
 [ClassBehavior] Property name _
 [(arglist)] [As type]
 Get
 [statements]
 End Get
 Set
 [statements]
 End Set
End Property
Public

Use: Optional

Type: Keyword

Gives the property scope through all procedures in all modules in the project. If used within a
createable class module, the property is also accessible from outside the project. Public,
Private, and Friend are mutually exclusive.

Private

Use: Optional

Type: Keyword

Restricts the scope of the property to those procedures within the same module. Public,
Private, and Friend are mutually exclusive.

Friend

Use: Optional

Type: Keyword

Only valid in a class module, it gives the property scope to all modules within a project, but not
to modules outside the project. Public, Private, and Friend are mutually exclusive.

Default

Use: Optional

Type: Keyword

Specifies that the property is the default property. Must have both a Get and a Set block.

ReadOnly

Use: Optional

Type: Keyword

 482

Indicates that the property is read-only. Must have only a Get block. (If you try to write a Set
block, VB will generate a syntax error.)

WriteOnly

Use: Optional

Type: Keyword

Indicates that the property is write-only. Must have only a Set block. (If you try to write a Get
block, VB will generate a syntax error.)

ClassBehavior

Use: Optional

Type: Keyword

One of the following keywords:

Overloads

Indicates that more than one declaration of this function exists (with different argument
signatures). For more detail, see Chapter 3.

Overrides

For derived classes, indicates that the function overrides the function by the same name (and
argument signature) in the base class. For more detail, see Chapter 3.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see Chapter
3.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail, see
Chapter 3.

MustOverride

Indicates that the function must be overridden in a derived class. For more detail, see
Chapter 3.

Shadows

Use: Optional

Type: Keyword

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation.

Shared

 483

A shared function is callable without creating an object of the class. It is, in this strange sense,
shared by all objects of the class. These are also called static functions.

name

Use: Required

Type: String literal

The name of the property.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the property as arguments from the calling
procedure.

type

Use: Optional

The return data type of the property. The default is Object.

Description

Declares a class property

Rules at a Glance

• Property procedures are Public by default.
• The Friend keyword is only valid within class modules. Friend procedures are accessible to

all procedures in all modules and classes within a project, but are not listed in the class library
for that project. Therefore, they cannot be accessed from projects or applications outside the
defining application.

• Properties and procedures defined using the Friend keyword cannot be late bound.
• The Default keyword can only be used in the case of parameterized properties. Typically,

these are properties that either return collection objects or are implemented as property arrays.
• By default, arguments are passed to the property procedures by value (ByVal).
• type defines not only the data type returned by the property, but also the data type of the

value to be assigned to the property.
• A Property Get procedure is very similar to a function: the value returned by the property is

indicated by assigning that value to a variable whose name is the same as the property.
• In a Property Set procedure, the value being assigned to the property is represented by the

keyword Value. Its data type is represented by the As type clause.
• If an Exit Property statement is executed, the Property procedure exits and program

execution immediately continues with the statement following the call to the property. Any
number of Exit Property statements can appear in a Property procedure.

Programming Tips and Gotchas

 484

• You should protect the values of properties by defining a Private variable to hold the internal
property value and to control the updating of the property by outside applications through the
Property statement, as the following template describes:

• ' Salary property is read/write
• Private mdecSalary As Decimal
• Property Salary() As Decimal
• Get
• Salary = mdecSalary
• End Get
• Set
• mdecSalary = Value
• End Set

 End Property

Otherwise, if the variable used to store a property value is public, its value can be modified
arbitrarily by any application that accesses the class module containing the property.

• Typically, arglist need be specified only in the case of property arrays. For example:
• Public Class CEmployee
• Private sPhone(2) As String
• Property Phone(idx As Integer) As String
• Get
• Phone = sPhone(idx)
• End Get
• Set
• sPhone(idx) = Value
• End Set
• End Property

End Class

• The class constructor is typically used to initialize property values to their default settings.

VB .NET/VB 6 Differences

The syntax for declaring properties in VB .NET is significantly different from the syntax in VB 6. Some
of the differences include:

• VB 6 includes individual Property Get (to retrieve a property value), Property Let (to
assign a property value), and Property Set (to assign a reference to a property value)
statements. VB .NET replaces this with a single Property...End Property construct.

• In VB 6, all values—including the property values themselves—passed to property statements
are expressed as parameters. In VB .NET, the value to be assigned to a property is
represented by the Value keyword, rather than by a formal parameter.

• In VB 6, because Property Set, Property Let, and Property Get procedures are
separate, standalone constructs, it is possible to expose property procedures with mixed
visibility (a private Property Let procedure, for example, and a public Property Get
procedure). In VB.NET, because the Property statement defines the visibility of the property
as a whole, mixed visibility is not supported.

See Also

Get Statement, Set Statement

 485

Protected Keyword

Description

Used to declare classes and their members.

When the Protected keyword is used to modify a member declaration, the member being declared
has direct access scope to the class module in which the member is declared, as well as to all derived
classes in all projects. However, as far as object access is concerned, the member is considered
Private; that is, it can only be accessed within the declaring class. (See the upcoming example.)

Declaring a class module as Protected limits all of the class' members to Protected access (or
stronger if the member has further specific access restrictions).

Example

Suppose we declare the following variable in a class module named Class1:

Protected sProtectedVar As String

Then within Class1 or any of its derived classes in any project, we can use the variable directly, as in:

Public Class Class2
 Inherits Class1

 Public Sub Test()
 MsgBox sProtectedVar
 End Sub

End Class

On the other hand, the following code, located in a form module, is illegal:

Dim c as New Class1
c.sProtectedVar = "Donna"

VB .NET/VB 6 Differences

The Protected keyword is new to VB .NET.

See Also

Friend Keyword

Public Statement

Syntax

 486

[Overrides] [Shadows] Public [WithEvents] varname[([subscripts])] _
 [As [New] type] [, [WithEvents] _
 varname[([subscripts])] [As [New] type]] ...
Overrides

Use: Optional

Type: Keyword

In a derived class definition, indicates that a variable overrides a similar variable in a base
class.

Shadows

Use: Optional

Type: Keyword

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation.

WithEvents

Use: Optional

Type: Keyword

A keyword that denotes the object variable, varname, can respond to events triggered from
within the object to which it refers.

varname

Use: Required

Type: String literal

The name of the variable, which must follow Visual Basic naming conventions.

subscripts

Use: Optional

Type: Numeric constant or literal

Denotes varname as an array and specifies the dimensions and number of elements of the
array.

New

Use: Optional

Type: Keyword

Used to automatically create an instance of the object referred to by the object variable,
varname.

 487

type

Use: Optional

Data type of the variable varname.

Description

Used at module level to declare a public variable and allocate the relevant storage space in memory.

A Public variable has both project-level scope—that is, it can be used by all procedures in all modules
in the project—and, when used in a Class module, it can have scope outside the project.

The Public keyword also applies to procedures and class modules.

Rules at a Glance

• The behavior of a Public variable depends on where it is declared, as the following table
shows:

Variable declared in... Scope
A procedure Illegal—this generates a compile-time error.
Code module
declarations section Variable is available to all modules within the project.

Class module
declarations section

Variable is available as a property of the class to all modules within the
project and to all other projects referencing the class.

Form module
declarations section

Variable is available as a property of the form to all modules within the
project.

• WithEvents is only valid when used to declare an object variable.
• There is no limit to the number of variables that can refer to the same object using the

WithEvents keyword; they will all respond to that object's events.
• You cannot create an array variable that uses the WithEvents keyword.
• The New keyword cannot be used in the same object-variable declaration as WithEvents.
• The subscripts argument has the following syntax:

upperbound [, upperbound]

• Using the subscripts argument, you can declare up to 60 dimensions for the array.
• To declare an array with no specified size, use commas with no integers between them, as in:
• Public sNames()

Public sThings(,)

You can set or change a number of elements of an array using the ReDim statement.

• The New keyword denotes that a new instance of the object will be created when the first
reference to the object is made. Use of the New keyword therefore negates the need to use
the Set statement.

• You cannot use the New keyword to declare any of the following: variables of any intrinsic data
type (the New keyword is for use with object variables only); instances of dependent objects (a
dependant object is one that can only be created from a method or property in another object;
a dependent object is not publicly createable); or a variable that uses the WithEvents
argument.

 488

Programming Tips and Gotchas

• Instead of declaring a variable as Public within either a form or class module, proper object-
oriented programming techniques dictate that you should create a Property procedure that
assigns and retrieves the value of a private variable.

• Always use Option Explicit at the beginning of a module to prevent misnamed variables
from causing hard to find errors.

VB .NET/VB 6 Differences

• In VB 6, the subscripts argument takes the form:

[lowerbound To] upperbound [, [lowerbound To] upperbound]

• VB .NET, however, does not allow you to set the lower bound of an array.
• In VB 6, an array whose number of elements are declared in advance is a fixed array; it

cannot be redimensioned. In VB .NET, all arrays are dynamic and can be redimensioned.
• In VB .NET, variables declared with the New keyword on the same line as the Public

statement are no longer created when their first reference is encountered. Hence, whereas in
VB 6, declaring an object variable using a statement such as:

Dim oObj As New MyApp.SomeObject

could interfere with object destruction, in VB .NET this is not the case.

• In VB 6, the type argument can be Currency. The Currency data type, however, is not
supported by VB .NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

PV Function

Class

Microsoft.VisualBasic.Financial

Syntax
PV(rate, nper, pmt[, fv [, due]])
rate

Use: Required

Data Type: Double

The interest rate per period

nper

 489

Use: Required

Data Type: Integer

The number of payment periods in the annuity

pmt

Use: Required

Data Type: Double

The payment made in each period

fv

Use: Optional

Data Type: Double

The future value of the loan or annuity

due

Use: Optional

Data Type: DueDate

Either DueDate.BegOfPeriod or DueDate.EndOfPeriod

Return Value

A Double specifying the present value of an annuity

Description

Calculates the present value of an annuity (either an investment or loan) based on a regular number of
future payments of a fixed value and a fixed interest rate.

The present value is the current value of a future stream of equal cash flows discounted at some fixed
interest rate.

Rules at a Glance

• The time units used for the number of payment periods, the rate of interest, and the payment
amount must be the same. In other words, if you state the payment period in months, you
must also express the interest rate as a monthly rate and the amount paid per month.

• The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you are
calculating using monthly periods, you must also divide the rate per period by 12. For example,
10% per annum equates to a rate per period of .00833.

• The fv argument indicates the future value or cash balance after the last payment. The
default is 0, since that reflects the value of a loan after the final payment.

• Payments made against a loan or added to the value of savings are expressed as negative
numbers.

 490

• The due argument states whether the payment is made at the start of a period or at the end
(the default value).

Programming Tips and Gotchas

Make sure that nper, rate, and pmt all reflect values for an identical time period. For example, if pmt
represents a monthly payment, rate should represent the monthly interest rate, rather than an annual
interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PPmt Function,
Rate Function

QBColor Function

Class

Microsoft.VisualBasic.Information

Syntax
QBColor(color)
color

Use: Required

Data Type: Integer

A whole number between 0-15

Return Value

Long

Description

Returns a Long integer representing the RGB system color code

Rules at a Glance

color can have any of the following values:

Number Color
0 Black
1 Blue
2 Green
3 Cyan
4 Red

 491

5 Magenta
6 Yellow
7 White
8 Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Light Yellow
15 Bright White

Programming Tips and Gotchas

• The RGB function allows much more flexibility than the older QBColor function, which is a
remnant of QBasic.

• Visual Basic now contains a wide range of intrinsic color constants that can be used to assign
colors directly to color properties of objects.

See Also

RGB Function

Queue Class

Namespace

System.Collections

Createable

Yes

Syntax
Dim queuevariable As [New] Queue
queuevariable

Use: Required

Data Type: Queue object

The name of the Queue object

Description

A Queue object is a model of a queue. Succinctly put, a queue is a first-in, first-out data structure.
(This is often abbreviated FIFO.) Put another way, a queue is a data structure that models a line of

 492

items. There is a method for inserting items at the end of the line (enqueueing), as well as a method
for removing the item that is currently at the front of the line (dequeueing). Under this scenario, the
next item to be dequeued is the item that was placed in line first—hence the term first-in, first-out.

Note that the elements in a Queue object are of type Object.

Queue class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +

IsReadOnly

IsSynchronized

SyncRoot

Public Instance Methods

Clone

Contains +

CopyTo +

Dequeue +

Enqueue +

Equals

GetEnumerator

GetHashCode

GetType

Peek +

ToArray +

ToString

Example

Here is a bit of code to illustrate the members of the Queue class:

' Define a new queue
Dim q As New Queue()

 493

' Queue up some items
q.Enqueue("Chopin")
q.Enqueue("Mozart")
q.Enqueue("Beethoven")
' Is an item in the queue?
MsgBox("Beethoven in queue: " & CStr(q.Contains("Beethoven")))
' Peek at the first item
MsgBox("First item in queue is: " & q.Peek.ToString)
' Send queue to an array and display all items
Dim s() As Object = q.ToArray()
Dim i As Integer
For i = 0 To UBound(s)
 Debug.WriteLine(CStr(s(i)))
Next
' Clear queue
q.Clear()

VB .NET/VB 6 Differences

The Queue object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Stack Class

Queue.Clear Method

Class

System.Collections.Queue

Syntax
queuevariable.Clear()

Return Value

None

Description

Removes all entries from the queue

See Also

Queue.Dequeue Method

Queue.Contains Method

 494

Class

System.Collections.Queue

Syntax
queuevariable.Contains(obj)
obj

Use: Required

Data Type: Any

The value to search for on the queue

Return Value

Boolean (True or False) indicating whether obj is found in the queue

Description

Returns a Boolean indicating whether a given element whose value is obj is somewhere in the queue

Rules at a Glance

• obj must correspond exactly to an item in the queue for the method to return True.
• The method searches the queue sequentially. In other words, its performance is inversely

proportional to the number of items in the queue.

Programming Tips and Gotchas

In comparing objects in the queue with obj, the Contains method in turn calls the BCL's Object.Equals
method to perform the comparison. The Equals method returns True if two object instances are the
same instance.

Queue.CopyTo Method

Class

System.Collections.Queue

Syntax
queuevariable.CopyTo(array, index)
array

Use: Required

 495

Data Type: Array of Objects

Array to which to copy the queue's objects

index

Use: Required

Data Type: Integer

The index of the first array element to receive an element of the queue

Return Value

None

Description

Copies the queue elements into an array, starting at a specified array index

Rules at a Glance

• The array can be of any data type that is compatible with the queue elements. Thus, for
instance, we cannot use an Integer array to hold queue elements that are strings (that is,
Objects whose subtype is String).

• The array must be sized to accommodate the elements of the queue prior to calling the
CopyTo method.

Example
' Define a new queue
Dim q As New Queue()
Dim aQueue(), oItem As Object

' Queue up some items
q.Enqueue("Chopin")
q.Enqueue("Mozart")
q.Enqueue("Beethoven")

' Size the array and copy to it
Redim aQueue(q.Count - 1)
q.CopyTo(aQueue,0)

For Each oItem in aQueue
 Console.WriteLine(oItem)
Next

See Also

Queue.ToArray Method

Queue.Count Property

 496

Class

System.Collections.Queue

Syntax
queuevariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the queue.

Queue.Dequeue Method

Class

System.Collections.Queue

Syntax
queuevariable.Dequeue()

Return Value

Object

Description

Removes the first item from the queue and returns it as an Object

Rules at a Glance

• Dequeue removes the item at the beginning of the queue and decrements the Count property
by one.

• The Dequeue method generates an error if applied to an empty queue. Thus, it may be
advisable to check for an empty queue using the Count property before attempting to dequeue.

Programming Tips and Gotchas

Dequeue is similar to the Peek method. The Peek method returns a reference to the object at the
beginning of the queue, but unlike the Dequeue method, does not remove it from the queue.

See Also

Queue.Peek Method

 497

Queue.Enqueue Method

Class

System.Collections.Queue

Syntax
queuevariable.Enqueue(obj)
obj

Use: Required

Data Type: Object

The item to place in the queue

Return Value

None

Description

Places an object at the end of the queue

Rules at a Glance

Enqueue adds an item to the end of the queue and increases the Count property by 1.

Queue.Peek Method

Class

System.Collections.Queue

Syntax
queuevariable.Peek()

Return Value

Object

Description

Returns the first item in the queue as an Object, but does not remove it from the queue

 498

Programming Tips and Gotchas

The Peek method is similar to the Queue object's Dequeue method, except that it leaves the queue
intact.

See Also

Queue.Dequeue Method

Queue.ToArray Method

Class

System.Collections.Queue

Syntax
queuevariable.ToArray()

Return Value

An Array of type Object

Description

This method creates an array of type Object, copies the elements of the queue—in order—to that
array, and then returns the array.

Programming Tips and Gotchas

Unlike the CopyTo method, we do not need to define an array in advance. However, we cannot
specify the starting array index for the copy procedure using ToArray.

RaiseEvent Statement

Syntax
RaiseEvent eventName([arglist])
eventName

Use: Required

Data Type: String literal

The name of the event

arglist

 499

Use: Optional

Data Type: Any (defined by the Event statement)

A comma-delimited list of arguments

Description

Generates a predefined, custom event within any procedure of an object module

Rules at a Glance

• eventName must already be defined in the Declarations section of the module using the
Event statement.

• arglist must match the number and data type of parameters defined in the Event
statement and must be surrounded by parentheses.

• The RaiseEvent and Event statements can only be used in object modules and not in code
modules.

Example

The following code snippet demonstrates how you can use an event to communicate a status
message back to the client application and, at the same time, use a ByRef argument to trap a user
response in the client application. This gets around the fact that events can't return values. To take
advantage of this functionality, the client must declare a reference to this class using the WithEvents
keyword.

Public Class CTransact

Public Event Status(Message As String, _
 ByRef Cancel As Boolean)

Public Function UpdateRecords(iVal As Integer) as Boolean
 Dim blnCancel As Boolean = False

 If iVal > 1000 Then
 RaiseEvent Status("Is value too high?", blnCancel)
 If blnCancel Then
 Console.WriteLine("Abandoning operation...")
 Exit Function
 Else
 iVal = 1000
 End If
 End If
 console.writeline(iVal)
 End Function

End Class

Module modMain

 Public WithEvents oTran As New CTransact

 Public Sub Main
 otran.updaterecords(1100)
 End Sub

 500

 Private Sub UpdateProb(sMsg As String, _
 byref blnCancel as Boolean) _
 Handles oTran.Status

 If MsgBoxResult.Yes = MsgBox(sMsg, MsgBoxStyle.YesNo _
 Or MsgBoxStyle.Question) Then
 blnCancel = True
 End If
 End Sub
End Module

Programming Tips and Gotchas

• To allow the client application to handle the event being fired, the object variable must be
declared using the WithEvents keyword.

• VB custom events do not return a value; however, you can use a ByRef argument in
arglist to simulate a return value, as shown in the previous example.

• RaiseEvent is not asynchronous. In other words, when you call the RaiseEvent statement
in your class code, your class code will not continue executing until the event has been either
handled by the client or ignored (if the client is not handling the events raised by the class).
This can have undesirable side effects, and you should bear it mind when planning your
application. For example, you may have a recordset open or a transaction pending and have
to wait for the user to respond to a message dialog box at the client. This could easily turn into
a bottleneck, adversely affecting the scalability of your application.

• For more information about implementing your own custom events, see Chapter 6.

See Also

Event Statement

Randomize Procedure

Class

Microsoft.VisualBasic.VBMath

Syntax
Randomize([number])
number

Use: Optional

Data Type: Object or any valid numeric expression

A number used to initialize the random number generator

Description

Initializes the random-number generator

Rules at a Glance

 501

• Randomize uses number as a new seed value to initialize the random-number generator used
by the Rnd function. The seed value is an initial value that is used to generate a sequence of
pseudorandom numbers.

• If you do not pass number to the Randomize procedure, the value of the system timer will be
used as the new seed value.

• Repeatedly passing the same number to Randomize does not cause Rnd to repeat the same
sequence of random numbers.

Programming Tips and Gotchas

If you need to repeat a sequence of random numbers, you should call the Rnd function with a negative
number as an argument immediately prior to using Randomize with any numeric argument.

See Also

Rnd Function

Rate Function

Class

Microsoft.VisualBasic.Financial

Syntax
Rate(nper, pmt, pv[, fv[, due[, guess]]])
nper

Use: Required

Data Type: Double

The total number of periods in the annuity.

pmt

Use: Required

Data Type: Double

The payment amount per period.

pv

Use: Required

Data Type: Double

The present value of the payments or future receipts

fv

 502

Use: Optional

Data Type: Double

The future value or cash balance after the final payment. If omitted, its value defaults to 0.

due

Use: Optional

Data Type: DueDate enumeration

A flag indicating whether payments are due at the beginning of the payment period (a value of
DueDate.BegOfPeriod) or at the end of the payment period (a value of
DueDate.EndOfPeriod, the default).

guess

Use: Optional

Data Type: Double

An estimate of the value to be returned by the function. If omitted, its value defaults to .1
(10%).

Return Value

A Double representing the interest rate per period

Description

Calculates the interest rate for an annuity (a loan or an investment) that consists of fixed payments
over a known duration

Rules at a Glance

• For pv and fv, cash paid out is expressed as a negative number; cash received is expressed
as a positive number.

• The function works using iteration. Starting with guess, Rate cycles through the calculation
until the result is accurate to within 0.00001 percent. If a result can't be found after 20 tries,
the function fails.

Programming Tips and Gotchas

• In the case of a loan, pv is the loan amount. In the case of an investment, pv is the beginning
balance.

• In the case of a loan, fv is typically 0, reflecting that the entire loan has been paid. In the case
of an investment, fv is the value of the investment with interest at the end of the investment
period.

• If the function fails because it could not calculate an accurate interest rate in 20 iterations, try
a different value for guess.

• The value returned by the function rate is the interest rate for the same time period as
payments were made. Typically, this is one month, in which case you must multiply by 12 to
derive the annual percentage rate.

 503

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PPmt Function, PV
Function

ReDim Statement

Syntax
ReDim [Preserve] varname(subscripts) _
 [, varname(subscripts) ...
Preserve

Use: Optional

Type: Keyword

Preserves the data within an array when changing the only or last dimension

varname

Use: Required

Type: String literal

Name of the variable

subscripts

Use: Required

Type: Numeric

Number of elements and dimensions of the array, using the syntax:

upper [, upper] ...

The number of upper bounds specified is the number of dimensions. Each upper bound specifies the
size of the corresponding coordinate.

Description

Used within a procedure to resize and reallocate storage space for an array

Rules at a Glance

• Arrays can be sized or resized using the ReDim statement. There is no limit to the number of
times you can redimension a dynamic array.

• The dimension cannot be changed, nor can the data type of the array be changed.
• If you do not use the Preserve keyword in redimensioning the array, you can resize any of

the coordinates of the array.

 504

• Use of the Preserve keyword allows you to retain the current values within the array, but it
also allows you to resize only the last coordinate of an array.

• You can redimension an array in a called procedure if you pass the array to the procedure by
reference. For example:

• Public Sub Main
•
• Dim lArr() AS Object = {1,2,3,4,5,6,7,8,9,10}
• Dim lNum As Long
•
• ResizeArray(lArr)
• for each lNum in lARr
• Console.WriteLine(lNum)
• Next
•
• End Sub
•
• Public Sub ResizeArray(ByRef arr() As Object)
• ReDim Preserve arr(15)
• arr(10) = 20
• arr(11) = 50
• arr(12) = 80
• arr(13) = 90
• arr(14) = 100
• arr(15) = 200

End Sub

Note that this is contrary to the documentation, which indicates that arrays passed to called
procedures by reference will return unmodified.

Programming Tips and Gotchas

• If the ReDim Preserve statement is used to reduce the number of array elements, the data in
the discarded elements is lost. And although this can be interpreted as a "narrowing"
operation, it is unaffected by the state of the Option Strict setting.

• Redimensioning an array, and particularly a large string array, can be expensive in terms of an
application's performance. Consequently, frequent redimensioning, such as in the code
fragment:

ReDim Preserve aNames(aNames(UBound)+1)

is not a good idea. Instead, it's best to allocate a "pool" of array elements by creating an array
larger than needed, then using a counter to keep track of how many elements remain to be
filled. For example:

If intCtr = UBound(aNames)) Then
 ReDim Preserve aNames(aNames(Ubound)+50)
 ...

VB .NET/VB 6 Differences

• In VB 6, it is possible (though not recommended) to declare a dynamic array using the ReDim
statement, then to use the ReDim statement again to redimension it. In VB .NET with Option
Explicit Off, using the ReDim statement to declare an array is not permitted and
generates a compiler error.

• In VB 6, only arrays declared without an explicit number of elements, such as:

 505

Dim arr() As Variant

were dynamic arrays and could be redimensioned using ReDim. In VB .NET, all arrays are
dynamic.

• VB 6 allows you to redimension both the upper and lower bounds of an array. Since VB .NET
does not allow you to configure an array's lower bound, you can modify the array's upper
bound only.

• In VB 6, it is possible to change the number of dimensions of an array as long as the
Preserve keyword isn't used. VB .NET, on the other hand, does not allow you to change the
number of dimensions of an array.

• Although neither VB 6 nor VB .NET permit you to change the data type of an array, the ReDim
statement in VB 6 nevertheless supports an As type clause that allows you to declare the
redimensioned array's data type. As long as type is the same as the originally declared type,
ReDim won't generate a compiler error. In VB .NET, the use of the As type clause is not
supported.

See Also

Dim Statement

Rem Statement

Syntax

Rem comment
' comment
comment

Use: Optional

A textual comment to place within the code

Description

Use the Rem statement or an apostrophe (') to place remarks within the code.

Rules at a Glance

• Text or code commented out using either the Rem statement or an apostrophe is not compiled
into the final program and, therefore, does not add to the size of the executable.

• If you use the Rem statement on the same line as program code, a colon is required after the
program code and before the Rem statement. For example:

• Set objDoc = MyApp.MyObj : Rem Define the object
 Rem reference

This is not necessary when using the much more common apostrophe:

Set objDoc = MyApp.MyObj ' Define the object reference

 506

• Apostrophes held within quotation marks are not treated as comment markers, as this code
snippet shows:

myVar = "'Something'"

Programming Tips and Gotchas

• The Visual Studio development environment contains block-comment and block-uncomment
buttons on the Text Editor toolbar, which allow you to comment out or uncomment a selection
of many rows of code at once.

• You cannot use the line-continuation character ("_") with comments.

VB .NET/VB 6 Differences

In VB 6, if a line containing a comment ends in an underscore (the line continuation character), the
following line is interpreted as a comment as well. In VB .NET, line continuation characters are ignored
at the end of a comment line; each comment line must be prefaced with the Rem statement or the '
symbol.

Rename Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
Rename(oldpath, newpath)
oldpath

Use: Required

Data Type: String

The current filename and optional path

newpath

Use: Required

Data Type: String

The new filename and optional path

Description

Renames a disk file or folder

Rules at a Glance

 507

• newpath must not already exist, or an error will be generated.
• oldpath must exist; the Rename procedure isn't able to create a new file or directory.
• When renaming a file or folder, both newpath and oldpath should include a path to the

same folder, or the function will move the file or directory. For instance, the statement:

Rename("c:\Temp\Graphics", "Images")

renames the Graphics folder to Images and moves it so that it becomes a subdirectory of the
current directory.

• Path information included in newpath and oldpath can take the form of the local system's
path or the UNC path. The local system path can be either a fully qualified path or a relative
path from the current directory.

• newpath and oldpath can be on different drives, but if they are, Rename cannot both move
the files and rename them.

• newpath and oldpath cannot include the wildcard characters ? and *.
• You cannot use the Rename procedure with a file that is already open.

Programming Tips and Gotchas

The Rename procedure can be used to move a file from one folder to another and, optionally, to
change the file's name at the same time. If the folder specified in newname exists and is different from
that stated in oldname, the file will be moved to the folder specified in newname. If the filename in
newname is also different, the file will be renamed at the same time.

VB .NET/VB 6 Differences

The Rename procedure is new to VB .NET.

Replace Function

Class

Microsoft.VisualBasic.Strings

Syntax
Replace(expression, find, replace [, _
 start[, count[, compare]]])
expression

Use: Required

Data Type: String

The complete string containing the substring to be replaced

find

Use: Required

 508

Data Type: String

The substring to be found by the function

replace

Use: Required

Data Type: String

The new substring to replace find in expression

start

Use: Optional

Data Type: Long

The character position in expression at which the search for find begins

count

Use: Optional

Data Type: Long

The number of instances of find to replace

compare

Use: Optional

Data Type: CompareMethod constant

The method used to compare find with expression; its value can be
CompareMethod.Binary (for case-sensitive comparison) or CompareMethod.Text (for
case-insensitive comparison)

Return Value

The return value from Replace depends on the parameters you specify in the argument list, as the
following table shows.

If Return value

expression = "" Zero-length string ("")

find = "" Copy of expression

replace = "" Copy of expression with all instances of find removed

start > Len(expression) Zero-length string ("")

count = 0 Copy of expression

Description

Replaces a given number of instances of a specified substring in another string

 509

Rules at a Glance

• If start is omitted, the search begins at the start of the string.
• If count is omitted, all instances of the substring after start are replaced.
• CompareMethod.BinaryCompare is case sensitive; that is, Replace matches both

character and case, whereas CompareMethod.Text is case insensitive, matching only
character regardless of case.

• The default value for compare is CompareMethod.Binary.
• start not only specifies where the search for stringToReplace begins, but also where the

new string returned by the Replace function will commence.

Programming Tips and Gotchas

• If count is not used, be careful when replacing short strings that may form parts of unrelated
words. For example, consider the following:

• Dim sString
• sString = "You have to be careful when you do this "
• _
• & "or you could ruin your string"

Debug.WriteLine(Replace(sString, "you", "we"))

Because we don't specify a value for count, the call to Replace replaces every occurrence of
"you" in the original string with "we". But the fourth occurrence of "you" is part of the word
"your", which is modified to become "wer".

• You must also be aware that if start is greater than 1, the returned string starts at that
character and not at the first character of the original string, as you might expect. For example,
given the statements:

• sOld = "This string checks the Replace function"
• sNew = Replace(sOld, "check", "test", 5, _

 CompareMethod.Text)

• sNew will contain the value:

"string tests the Replace function"

• You can use the Mid function on the left side of an argument to replace part of string, but to
replace more than one instance of a substring requires a complicated Do While loop that
constantly checks for the position of any remaining instances of the substring to be replaced.

• The BCL's System.String class also has a public instance Replace method, which replaces all
occurrences of a character or string with another. Its syntax is:

sString.Replace(oldValue, newValue)

where oldValue is a String or Char value containing the text to be replaced and newValue
is a String or Char value containing the replacement text.

See Also

InStr Function, InStrRev Function, Mid Function

Reset Procedure

 510

Class

Microsoft.VisualBasic.FileSystem

Syntax
Reset()

Description

Closes all files that have been opened using the FileOpen procedure

Rules at a Glance

The contents of any current file buffers are written to disk by the Reset procedure immediately prior to
Reset closing the respective files.

Programming Tips and Gotchas

The Reset procedure is generally used as a last resort, cleaning up if your program is terminating
abnormally. Normally, you should write code to close each open file using the FileClose procedure.

See Also

FileClose Procedure, FileOpen Procedure

Resume Statement

Syntax
Resume [0]
Resume Next
Resume label

Description

Used to continue program execution when an error-handling routine is complete

Rules at a Glance

Resume can take any of the forms shown in the following table.

Statement Description

Resume

If the error-handling routine is in the same procedure as the statement that caused the
error, program execution continues with the statement that caused the error.

If the error occurred in an external procedure called by the procedure containing the error

 511

handler, program execution continues with the statement in the procedure containing the
error handler that last called the external procedure.

Resume
Next

If the error-handling routine is in the same procedure as the statement that caused the
error, program execution continues with the statement following the statement that
caused the error.

If the error occurred in an external procedure called by the procedure containing the error
handler, program execution continues with the statement containing the error handler
immediately following the statement that last called the external procedure.

Resume
label

label must be in the same procedure as the error handler.

Program execution continues at the specified label.

Programming Tips and Gotchas

• You can only use the Resume statement in an error-handling routine; otherwise, a runtime
error will be generated.

• An error-handling routine does not necessarily have to contain a Resume statement. If the
error-handling routine is at the end of the procedure and the result of the error handling would
be to exit the procedure, you can simply allow the program to execute the End Sub or End
Function statement. This has the effect of both resetting the Err object and exiting the
procedure. This is shown in the following simple code snippet:

• Private Sub DoSomething()
• On Error GoTo DoSomething_Err
• ...
• DoSomething_Err:
• MsgBox(Err.Description)

End Sub

See Also

On Error Statement, Err Object

Return Statement

Syntax

In a subroutine:

Return

In a function:

Return ReturnValue
ReturnValue

Use: Required

Data Type: Any

 512

The return value of the function

Description

Returns to the calling program from a subroutine or function

Rules at a Glance

• If the Return statement appears in a function, it must specify a return value for the function.
• Return causes program flow to leave the function or subroutine and return to the calling

program; any statements in the function or subroutine that follow Return are not executed.

Example
Public Sub Main

Dim d As Double = GetNumbers()
Console.WriteLine("The sum of values is " & d)

End Sub

Public Function GetNumbers As Double

Dim iCtr As Integer = 1
Dim sInput As String
Dim dblNums(9), dblSum, dblTemp As Double

Do
 sInput = InputBox("Enter number " & iCtr & ": ", "Sum")
 If sInput = "" Then
 if iCtr = 1 Then Return 0
 Exit Do
 End If
 If IsNumeric(sInput) Then
 dblNums(iCtr - 1) = CDbl(sInput)
 iCtr = iCtr + 1
 End If
Loop While iCtr <= 9

' Sum array elements
for each dblTemp in dblNums
 dblSum += dblTemp
next

return dblSum

End Function

Programming Tips and Gotchas

Return is identical in operation to the Exit Sub statement: it prematurely transfers control from a
procedure to the calling routine. It is also similar to the Exit Function statement; while it
prematurely transfers control out of the function, it also allows a particular value to be returned by the
function.

VB .NET/VB 6 Differences

 513

In VB 6, Return is a legacy statement that returns control after GoSub has invoked a subroutine
within a procedure. In VB .NET, however, Return returns control from a called function or procedure
and optionally allows the function's return value to be defined.

See Also

Exit Statement

RGB Function

Class

Microsoft.VisualBasic.Information

Syntax
RGB(red, green, blue)
red

Use: Required

Data Type: Integer

A number between 0 and 255, inclusive

green

Use: Required

Data Type: Integer

A number between 0 and 255, inclusive

blue

Use: Required

Data type: Integer

A number between 0 and 255, inclusive

Return Value

An Integer representing the RGB color value

Description

Returns a system color code that can be assigned to object color properties

Rules at a Glance

 514

• The RGB color value represents the relative intensity of the red, green, and blue components
of a pixel that produces a specific color on the display.

• The RGB function assumes any argument greater than 255 to be 255.
• The following table demonstrates how the individual color values combine to create certain

colors:

Color Red Green Blue
Black 0 0 0
Blue 0 0 255
Green 0 255 0
Red 255 0 0
White 255 255 255

Programming Tips and Gotchas

• The RGB value is actually derived using the following formula:

RGB = red + (green * 256) + (blue * 65536)

In other words, the individual color components are stored in the opposite order than you
would expect. VB stores the red color component in the low-order byte of the integer's low-
order word, the green color in the high-order byte of the low-order word, and the blue color in
the low-order byte of the high-order word.

• Visual Basic now contains a wide range of intrinsic color constants that can be used to assign
color values directly to color properties of objects.

See Also

QBColor Function

Right Function

Class

Microsoft.VisualBasic.Strings

Syntax
Right(string, length)
string

Use: Required

Data Type: String

The string to be processed

length

 515

Use: Required

Data Type: Integer

The number of characters to return from the right of the string

Return Value

String

Description

Returns a string containing the rightmost length characters of string

Rules at a Glance

• If length is 0, a zero-length string ("") is returned.
• If length is greater than the length of string, string is returned.
• If length is less than zero or is Nothing, an error is generated.
• If string contains a Nothing, Right returns Nothing.

Example

The following function assumes that it is passed either a filename or a complete path and filename,
and it returns the filename from the end of the string:

Private Function ParseFileName(strFullPath As String) As String
 Dim intPos, intStart As Integer
 Dim strFilename As String

 intStart = 1
 Do
 intPos = InStr(intStart, strFullPath, "\")
 If intPos = 0 Then
 strFilename = Right(strFullPath, _
 Len(strFullPath) - inStart + 1)
 Else
 intStart = intPos + 1
 End If
 Loop While intPos > 0

 ParseFileName = strFilename
End Function

Programming Tips and Gotchas

Use the Len function to determine the total length of string.

See Also

Left Function, Mid Function

RmDir Procedure

 516

Class

Microsoft.VisualBasic.FileSystem

Syntax
RmDir(path)
path

Use: Required

Data Type: String

The path of the folder to be removed

Description

Removes a folder

Rules at a Glance

• You may include a drive letter in path; if you don't specify a drive letter, the folder is assumed
to be on the current drive.

• path can be a fully qualified, relative, or UNC pathname.
• If the folder contains files or other folders, RmDir will generate runtime error 75, "Path/File

access error."

Example

The following subroutine deletes all the files in a folder and removes its subfolders. If those contain
files or folders, it deletes those too by recursively calling itself until all child folders and their files are
removed.

Private Sub RemoveFolder(ByVal strFolder As String)

 Static blnLowerLevel As Boolean ' A recursive call - no
 ' need to prompt user
 Dim blnRepeated As Boolean ' Use Dir state info on
 ' repeated calls
 Dim strFile As String ' File/Directory contained in
 ' strFolder

 ' Delete all files
 Do
 strFile = Dir(strFolder & "*.*", _
 VbNormal Or VbHidden Or VbSystem)
 If strFile <> "" Then
 If Not blnLowerLevel Then
 If MsgBox("Delete files in directory " & _
 strFolder & "?", vbQuestion Or vbOKCancel, _
 "Confirm File Deletion") _
 = vbCancel Then Exit Sub
 End If

 517

 strFile = strFolder & "\" & strFile
 Kill(strFile)
 End If
 Loop While strFile <> ""
 ' Delete all directories
 Do
 If Not blnRepeated Then
 strFile = Dir(strFolder & "*.*", VbDirectory)
 blnRepeated = True
 Else
 strFile = Dir()
 End If
 If strFile <> "" And _
 strFile <> "." And strFile <> ".." Then
 If Not blnLowerLevel Then
 blnLowerLevel = True
 If MsgBox("Delete subdirectories of " & _
 strFolder & "?", _
 vbQuestion BitOr vbOKCancel, _
 "Confirm Directory Deletion") _
 = vbCancel Then Exit Sub
 End If
 RemoveFolder(strFolder & "\" & strFile)
 blnRepeated = False
 End If
 Loop While strFile <> ""

 RmDir(strFolder)

End Sub

Programming Tips and Gotchas

• Use the Kill procedure to delete any remaining files from the folder prior to removing the folder.
• The effects of using Kill and RmDir are irreversible, since these statements do not move

deleted files to the Recycle Bin.

See Also

MkDir Procedure

Rnd Function

Class

Microsoft.VisualBasic.VBMath

Syntax
Rnd[(number)]
number

Use: Optional

 518

Data Type: Single

Any valid numeric expression that serves as a seed value

Return Value

A Single data type random number

Description

Returns a random number

Rules at a Glance

• The behavior of the Rnd function is determined by number, as described in the following table:

Number Rnd generates
< 0 The same number each time, using seed as the seed number
> 0 The next random number in the current sequence
0 The most recently generated number
Not supplied The next random number in the current sequence

• The Rnd function always returns a value between and 1.
• If number is not supplied, the Rnd function will use the last number generated as the seed for

the next generated number. This means that given an initial seed (seed), the same sequence
will be generated if number is not supplied on subsequent calls.

Example

The following example uses the Randomize procedure along with the Rnd function to fill 100 cells of
an Excel worksheet with random numbers. It requires that a reference to the Microsoft Excel Object
Library be added to the project. It also leaves the instance of Excel running once the code has finished
execution.

 Public Sub GenerateRandomNumbers()

 Dim oApp As New Excel.Application()
 Dim objSheet As Excel.Worksheet
 Dim intRow, intCol As Integer

 oApp.Visible = True
 objSheet = oApp.Workbooks.Add.Worksheets(1)
 Randomize()

 ' Set the color of the input text to blue
 objSheet.Cells.Font.ColorIndex = 5

 ' Loop through first 10 rows & columns,
 ' filling them with random numbers
 For intRow = 1 To 10
 For intCol = 1 To 10
 objSheet.Cells(intRow, intCol).Value = Rnd()
 Next
 Next

 519

 ' Resize columns to accommodate random numbers
 objSheet.Columns("A:C").AutoFit()
 objSheet = Nothing

 End Sub

Programming Tips and Gotchas

• Before calling the Rnd function, you should use the Randomize procedure to initialize the
random-number generator.

• The standard formula for producing numbers in a given range is as follows:

Int((highest - lowest + 1) * Rnd + lowest)

where lowest is the lowest required number in the range and highest is the highest.

See Also

Randomize Procedure

Round Function

Class

System.Math

Syntax
Math.Round(value[,digits])
value

Use: Required

Data Type: Numeric expression

Any numeric expression

digits

Use: Optional

Data Type: Integer

The number of places to include after the decimal point

Return Value

The same data type as value

Description

 520

Rounds a given number to a specified number of decimal places

Rules at a Glance

• digits can be any whole number between 0 and 16.
• Round follows standard rules for rounding. If the digit in the position to the right of digits is 5

or greater, the digit in the digits position is incremented by one; otherwise, the digits to the
right of digits are dropped.

• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

• Round with digits set to 2 is the equivalent of Format (expression, "#.##").
• If value is a string representation of a numeric value, Round will convert it to a numeric value

before rounding. However, if expression is not a string representation of a number, Round
generates runtime error 13, "Type mismatch." The IsNumeric function can be used to ensure
that expression is a proper numeric representation before calling Round.

• If value contains fewer decimal places than digits, Round does not pad the return value
with trailing zeroes.

VB .NET/VB 6 Differences

The named parameters of the Round function differ in VB 6 and in the .NET Framework. In VB 6, the
named arguments are number and numdigitsafterdecimal. In VB .NET, they're value and
digits.

See Also

Fix Function, Int Function

RTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax
RTrim(string)
string

Use: Required

Data Type: String

A valid string expression

Return Value

String

 521

Description

Removes any trailing spaces from string

Rules at a Glance

If string contains a Nothing, RTrim returns Nothing.

See Also

LTrim Function, Trim Function

SaveFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a file. The most common use of this dialog
box is to ask the user for the name of a file, after which we can use VB's functions to save an existing
file under that name, since the dialog box itself does not handle the process of saving a file.

The SaveFileDialog object has properties for setting the initial appearance and functionality of the
dialog box, a property for returning the filename selected by the user, as well as a method for showing
the dialog box. The object does not itself save the file, but instead provides the information that allows
your code to do this programmatically.

A SaveFileDialog object can be instantiated as follows:

Dim oSaveDlg As New SaveFileDialog

Selected SaveFileDialog Members

The following is a brief list of some of the more important members of the SaveFileDialog class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is
automatically added to the FileName property if the user fails to enter an extension. Its default
value is True.

DefaultExt property

 522

Gets or sets a String that defines the default file extension. The string should consist of the file
extension only, without a period.

FileName property

Gets or sets a String containing the name that the user selected or entered in the dialog box.

Filter property

Gets or sets a String containing the current filter, which determines the items that appear in
the "Save as type" drop-down listbox. A single item consists of a file description, a vertical bar,
and the file extension (usually "*." plus the file extension). If there are multiple extensions in a
single item, they are separated by semicolons. If there are multiple items, they are separated
by vertical bars. For example, the following code fragment assigns a filter string to a String
variable:

sFilter = "Text files (*.txt; *.vb)|*.txt;*.vb|" & _
 "Visual Basic files (*.vb)|*.vb|" & _
 "All files (*.*)|*.*"

FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter property
is selected. The index is one-based, rather than zero-based. When the dialog box is first
displayed and no FilterIndex value is specified, it defaults to 1. When the method returns, its
value indicates which filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the SaveFileDialog dialog
box.

OverwritePrompt property

Gets or sets a Boolean value that determines whether a confirmation message is displayed
when the user enters or selects an existing file.

RestoreDirectory

Gets or sets a Boolean value indicating whether the current directory is restored before the
dialog box closes. Its default value is False.

ShowDialog method

Opens the SaveFileDialog dialog box. Its syntax is:

oSaveDlg.ShowDialog()

It returns DialogResult.OK if the user clicks the OK button and DialogResult.Cancel if
the user clicks the Cancel button to close the dialog box.

Example
Dim fd As New SaveFileDialog()
fd.OverwritePrompt = True
If fd.ShowDialog() = DialogResult().OK Then
 Debug.WriteLine(fd.FileName)
End If

 523

VB .NET/VB 6 Differences

Whereas the SaveFileDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

See Also

OpenFileDialog Class

SaveSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
SaveSetting(appname, section, key, setting)
appname

Use: Required

Data Type: String

The name of the application

section

Use: Required

Data Type: String

The name of the registry key

key

Use: Required

Data Type: String

The name of the value entry whose value is to be saved

setting

Use: Required

Data Type: String or numeric

The value to save

 524

Description

Creates or saves an entry for a VB application in the Windows registry

Rules at a Glance

• If either the appname or section subkeys are not found in the registry, they are
automatically created.

• The function writes a value to a subkey of the KEY_CURRENT_USER\Software\VB and VBA
Program Settings key of the registry.

• section need not be an immediate subkey of appname; instead, section can be a fully
qualified path to a nested subkey, with each subkey separated from its parent by a backslash.
For example, a value of Settings\Coordinates for the section argument indicates that
the value is to be retrieved from HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\appname\Settings\Coordinates.

• Visual Basic writes setting to the registry as a string (REG_SZ) value. If setting is not a
string, VB attempts to coerce it into a string in order to write it.

• If the setting cannot be saved, a runtime error will be generated.

Programming Tips and Gotchas

• The built-in registry-manipulation functions allow you to create professional 32-bit applications
that use the registry for holding application-specific data, in the same way that .INI files were
used in the 16-bit environment. You can, for example, store information about the user's
desktop settings (i.e., the size and position of forms) the last time the program was run.

• Since it writes to the current user's registry key, SaveSetting should be used exclusively for
storing user settings; it should not be used to store nonuser information (i.e., hardware
information, system-level information, or application information that is independent of the
user).

• GetSetting, GetAllSettings, and SaveSetting allow you direct access to only a limited section
of the Windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings\yourappname).

• SaveSetting does not allow you to write to the default value of a registry key. Attempting to do
so produces runtime error 5, "Invalid procedure call or argument." This is not as great a
limitation as it may appear, since GetSetting also cannot retrieve a default value from a
registry key.

• This may seem obvious, but it has been often overlooked: if a user hasn't run the application
before and your application's initialization doesn't set up the registry structure for the
application, the key values won't be there.

• The previous point is particularly applicable when running your application on Windows in a
multiuser environment since Microsoft chose to use the HKEY_CURRENT_USER branch of the
registry to store entries for VB applications. This means that your application can be running
swimmingly for one user, but when another user logs onto the machine, the registry settings
are not available.

• Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetAllSettings Function, GetSetting Function

ScriptEngine Function

 525

Class

Microsoft.VisualBasic.Globals

Syntax
ScriptEngine()

Return Value

A String containing the value "VB"

Description

Indicates the programming language currently in use

Programming Tips and Gotchas

• A number of scripting engines support the ScriptEngine function, which allows you to
determine the programming language used for a particular block of code. These languages,
and the strings they return, are shown in the following table:

Language String
Microsoft JScript JScript
VB .NET VB
VBScript VBScript

• The ScriptEngine function can be most useful when calling legacy code. On the .NET platform,
the need to know the current scripting engine is substantially lessened by the existence of a
unified type system.

VB .NET/VB 6 Differences

The function is new to VB .NET and is not supported in VB 6.

See Also

ScriptEngineMinorVersion Function, ScriptEngineMajorVersion Function,
ScriptEngineBuildVersion Function

ScriptEngineBuildVersion Function

Class

Microsoft.VisualBasic.Globals

 526

Syntax
ScriptEngineBuildVersion()

Return Value

An Integer containing the build number

Description

Returns the build number of the VB .NET language engine

Programming Tips and Gotchas

This function is also implemented in the JScript scripting engine.

VB .NET/VB 6 Differences

This function is new to VB .NET.

See Also

ScriptEngineMinorVersion Function, ScriptEngineMajorVersion Function, ScriptEngine
Function

ScriptEngineMajorVersion Function

Class

Microsoft.VisualBasic.Globals

Syntax
ScriptEngineMajorVersion()

Return Value

An Integer containing the major version number

Description

Indicates the major version (1, 2, etc.) of the programming language currently in use

Rules at a Glance

The initial version of VB .NET returns "7" as its major version number.

Programming Tips and Gotchas

 527

• This function is also implemented in the JScript scripting engine.
• If your script requires some functionality available in a baseline version, ordinarily you want to

make sure that the script is running on that version or a later version. You do not want to test
for equality, since that may leave your code unable to run on later versions of the language
engine.

VB .NET/VB 6 Differences

This function is new to VB .NET.

See Also

ScriptEngine Function, ScriptEngineBuildVersion Function, ScriptEngineMinorVersion
Function

ScriptEngineMinorVersion Function

Class

Microsoft.VisualBasic.Globals

Syntax
ScriptEngineMinorVersion()

Return Value

An Integer containing the minor version number

Description

Indicates the minor version (the number to the right of the decimal point) of the programming language
currently in use

Programming Tips and Gotchas

• This function is also implemented in the JScript scripting engine.
• If your script requires some functionality available in a baseline minor version, ordinarily you

would want to make sure that the script is running on that version or a later version. Test for a
minor version with a code fragment like:

• Dim iMajor As Integer = ScriptEngineMajorVersion()
• Dim iMinor As Integer = ScriptEngineMinorVersion()
• If (lMajor = x And lMinor >= y) Or (lMajor > x) Then

 ...

VB .NET/VB 6 Differences

This function is new to VB .NET.

See Also

 528

ScriptEngine Function, ScriptEngineBuildVersion Function, ScriptEngineMajorVersion
Function

Second Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Second(timevalue)
timevalue

Use: Required

Data Type: Date

Date variable or literal date

Return Value

An Integer in the range 0 to 59, specifying the second in timevalue

Description

Extracts the seconds from a given time expression

Rules at a Glance

If the time expression time is Nothing, the Second function returns 0.

See Also

Minute Function, Hour Function

Seek Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
Seek(filenumber)
filenumber

 529

Use: Required

Data Type: Integer

Any valid file number

Return Value

A Long indicating the current read/write position

Description

Returns the current position of the read/write marker in the open file filenumber

Rules at a Glance

• The Seek function returns a whole number in the range 1 to 2,147,483,647.
• If filenumber was opened in Random mode, the number returned by the Seek function

refers to the next record to be written or read.
• In all other file open modes (Append, Binary, Input, and Output), the number returned by the

Seek function is the byte position at which the next read or write operation will occur.

See Also

Seek Procedure

Seek Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
Seek(filenumber, position)
filenumber

Use: Required

Data Type: Integer

Any valid file number

position

Use: Required

Data Type: Long

Any whole number between 1 and 2,147,483,647

 530

Description

Places the read/write marker at a given position where the next read/write operation should occur

Rules at a Glance

• If the file has been opened in Random mode, position refers to the next record number that
should be read or written.

• In all other file open modes (Append, Binary, Input, and Output), position is the byte where
the next read or write operation will start.

• The use of a record number in any subsequent FileGet or FilePut procedure overrides the
position set by the Seek procedure.

• The size of a file can be increased as the result of a write operation that is performed after a
call to the Seek procedure in which position is beyond the end of the file.

• If position is 0 or negative, a runtime error will be generated.

Programming Tips and Gotchas

Unused records in a random-access data file are not necessarily blank. For example, if you open a
brand new data file, then perform a seek operation to record number 10 and write a new record, the
preceding 9 records will be filled with binary data that was present on the section of the disk used by
the new file prior to its creation.

See Also

Seek Function

Select Case Statement

Syntax
Select Case testexpression
 [Case expressionlist-n
 [statements-n]] ...
 [Case Else
 [elsestatements]]
End Select
testexpression

Use: Required

Data Type: Any

Any numeric or string expression whose value determines which block of code is executed

expressionlist-n

Use: Required

Data Type: Any

 531

Comma-delimited list of expressions to compare values with testexpression

statements-n

Use: Optional

Program statements to execute if a match is found between any section of expressionlist
and testexpression

elsestatements

Use: Optional

Program statements to execute if a match between testexpression and any
expressionlist cannot be found

expressionlist can use any (or a combination of any) of the following:

expressionlist syntax Examples

expression iVar - iAnotherVar
iVar

expression To expression
5 To 10
8 To 11, 13 to 15
"A" To "D"

Is comparisonoperator expression Is = 10

Description

Allows for conditional execution of a block of code, typically out of three or more code blocks, based
on some condition. Use the Select Case statement as an alternative to complex nested
If...Then...Else statements.

Rules at a Glance

• Any number of Case clauses can be included in the Select Case statement.
• If a match between testexpression and any part of expressionlist is found, the

program statements following the matched expressionlist will be executed. When
program execution encounters the next Case clause or the End Select clause, execution will
continue with the statement immediately following the End Select clause.

• If multiple Case statements are True, only the statements belonging to the first true Case
statement are executed.

• If used, the Case Else clause must be the last Case clause. Program execution will only
encounter the Case Else clause—and thereby execute the elsestatements—if all other
expressionlist comparisons have failed.

• Use the To keyword to specify a range of values. The lower value must precede the To clause,
and the higher value follow it. Failure to do this does not generate a syntax error. Instead, it
causes the comparison of the expression with testexpression to always fail, so that
program execution falls through to the Case Else code block, if one is present.

• The Is keyword is used to precede any comparison operators. For example:

Case Is >= 100

• Select Case statements can also be nested.

 532

Example

The following example uses Select Case to act based on the response to a MsgBox function:

Select Case MsgBox("Backup file before changing.", vbYesNoCancel)
 Case vbYes
 ' do something
 Case vbNo
 ' do something
 Case vbCancel
 ' do something
End Select

Programming Tips and Gotchas

• The Select Case statement is the VB equivalent of the Switch construct found in C and
C++.

• The Case Else clause is optional. However, as with If...Then...Else statements, it is
often good practice to provide a Case Else to catch the exceptional instance when—perhaps
unexpectedly—a match cannot be found in any of the expressionlists you have provided.

• The To clause can be used to specify ranges of character strings. However, it is often difficult
to predict the thousands of possible combinations of valid characters between two words that
will be successfully matched by Select Case.

• The Is keyword used in the Select Case statement is not the same as the Is comparison
operator.

• Multiple conditions in a single Case statement are evaluated separately, not together; that is,
they are connected with a logical OR, not a logical AND. For example, the statement:

Case Is > 20, Is < 40

will evaluate to True whenever the value of testexpression is greater than 20. In this case,
the second comparison is never evaluated; it is evaluated only when testexpression is
under 20. This suggests that if you use anything other than the most straightforward
conditions, you should test them thoroughly.

See Also

If...Then...Else Statement

Send, SendWait Methods

Class

System.Windows.Forms.SendKeys

Syntax
SendKeys.Send(keys)

SendKeys.SendWait(keys)
keys

 533

Use: Required

Data Type: String

String describing keys to send to the active window

Description

Sends keystrokes to the active window of the foreground application. For SendKeys.Send, further
execution continues without waiting for the keys to be processed. For SendKeys.SendWait, further
execution is suspended until the keystrokes have been processed.

Rules at a Glance

• To send normal alphabetical or numeric characters, simply use the character or characters
enclosed in quotation marks. For example, "SOME Text 123".

• The following characters represent special keys or have special meaning within the Keys
string:

Character Special key representation
+ SHIFT
^ CTRL
% ALT
~ or {ENTER} ENTER

• To use these characters literally, you must surround the character with braces. For example,
to specify the percentage key, use {%}.

• Preceding a string with the special characters described in the previous table allows you to
send a keystroke combination beginning with Shift, Ctrl, or Alt. For example, to specify Ctrl
followed by "M," use ^M.

• If you need to specify that the Shift, Ctrl, or Alt key is held down while another key is pressed,
you should enclose the key or keys in parentheses and precede the parentheses with the
special character code. For example, to specify the M key being pressed while holding down
the Alt key, use %(M).

• The following table describes how to specify nondisplaying (action) characters in the Keys
string:

Key Code
Backspace {BACKSPACE}, {BS}, or {BKSP}

Break {BREAK}
Caps Lock {CAPSLOCK}
Del or Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER}or ~
Esc {ESC}
Help {HELP}
Home {HOME}
Ins or Insert {INSERT} or {INS}
Left Arrow {LEFT}
Num Lock {NUMLOCK}

 534

Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}

• Special formatting syntax allows you to specify a key being repeatedly pressed. The syntax is:

{key numberoftimes}

• For example, {M 3} represents pressing the M key three times.

Example

The following program launches Notepad, loads a text file whose name is passed as a parameter,
gives the focus to Notepad, then uses its File Exit menu option to close the application:

Private Sub LaunchNotepad(strFN As String)

Dim intTaskID As Integer
Dim strCmdLine As String

strCmdLine = "C:\windows\notepad.exe " & strFN
intTaskID = Shell(strCmdLine, vbNormalNoFocus)

' timing delay
DelayLoop(200000)

' Activate notepad by task ID
AppActivate(intTaskID)

' timing delay
DelayLoop(200000)

SendKeys.SendWait("%Fx")

 535

End Sub

Private Sub DelayLoop(n As Integer)

Dim iCtr As Integer

For iCtr = 1 to iCtr
 if iCtr/10 = iCtr \ 10 Then
 Application.DoEvents
 End If
Next

End Sub

Programming Tips and Gotchas

• Send and SendWait will only work directly with applications designed to run in Microsoft
Windows.

• You may find that some keys or key combinations cannot be sent successfully. For example,
you cannot use Send and SendWait to send the Print Screen key to any application. You also
cannot send the Alt and Tab keys ("%{Tab}").

• Typically, Send or SendWait is used as a "convenience" feature to send an occasional
keystroke to its application or to another application. It can also be used to add a keystroke-
macro capability to an application. In some cases, it is even used for remotely controlling an
application. In this latter case, Send or SendWait is often combined with the Shell function—to
start an instance of another application—or the AppActivate procedure—to give it the focus
before Send or SendWait is used. The example program illustrates this.

• It's worthwhile mentioning the difficulties of using Send or SendWait as a method for
controlling a program remotely. Windows is an event-driven operating system. Consequently,
the order of events is controlled primarily by the user, and the precise order of events is
difficult or even impossible to anticipate. Remote control of an application using Send or
SendWait, however, typically makes a number of assumptions about that application, the most
basic of which is that it has the focus when Send or SendWait is called. Given that Send and
SendWait do not offer close control over a remote application in the same way as OLE
automation does, the event-driven character of Windows can easily intervene to invalidate
those assumptions. This makes Send and SendWait less than optimal choices as tools for
remote control of an application.

Set Statement

Syntax
Get()
 [statements]
 [variable = Value]
End Get
statements

Use: Optional

Program code to be executed when the Property Set procedure is called

variable

Use: Optional

 536

Data Type: Any (the data type of the property)

Typically, a Private variable to hold the property value

Value

Use: Optional

Type: Keyword

A keyword representing the value to be assigned to the property

Description

Defines a Property Set procedure that sets a property value

Rules at a Glance

• The Set statement can only be used within a Property...End Property construct.
• The value assigned to the property is usually stored to a variable that's Private to the class.

This protects the property value from modification other than by calling the Property Get
procedure.

• The Value keyword represents the value to be assigned to the property. This value must be
of the same data type as the property.

Example

The example code illustrates a class that has a simple property and a property array. The syntax
documented above, rather than the "official" syntax (see the note in Programming Tips and
Gotchas), is used, since in our opinion it is much clearer and intuitive.

Public Enum WageConstants
 Rate = 0
 Overtime = 1
 Differential = 2
End Enum

Public Class CEmployee

Dim strName As String
Dim decWage(2) As Decimal

Public Property Name() As String
 Set(sName As String)
 strName = sName
 End Set
 Get
 Return strName
 End Get
End Property

Public Property Wage(iType As WageConstants) As Decimal
 Get
 Wage = decWage(iType)
 End Get
 Set
 decWage(iType) = Value

 537

 End Set
End Property

End Class

Module modMain

Public Sub Main

Dim oEmp As New CEmployee
oEmp.Name = "Bill"
oEmp.Wage(WageConstants.Rate) = CDec(15.00)
oEmp.Wage(WageConstants.Overtime) = CDec(15.00 * 1.5)
oEmp.Wage(WageConstants.Differential) = CDec(15.00 * .1)

Console.WriteLIne(oEmp.Name)
Console.Writeline(oEmp.Wage(WageConstants.Rate))

oEmp = Nothing

End Sub

End Module

Programming Tips and Gotchas

An alternative syntax for the Set statement (though it happens to be the officially documented one, as
well as the one used by Visual Studio) is:

Set(var As Type)
 [statements]
 [variable = var]
End Set

Here var is a variable representing the value to be assigned to the property, and Type is the data
type of var. Type must be the same as the data type of the Property statement.

VB .NET/VB 6 Differences

The Property Let and Property Set statements in VB 6 correspond to the Set statement in
VB .NET. Though the purpose and basic operation of these constructs are identical, the syntax of the
VB .NET construct is vastly simplified and more intuitive.

See Also

Get Statement, Property Statement

SetAttr Procedure

Class

Microsoft.VisualBasic.FileSystem

 538

Syntax
SetAttr(pathname, attributes)
pathname

Use: Required

Data Type: String

The name of the file or directory whose attributes are to be set

attributes

Use: Required

Data Type: FileAttribute enumeration

Numeric expression, FileAttribute enumerated constant, or global VB constant specifying
the attributes

Description

Changes the attribute properties of a file

Rules at a Glance

• You can use any sum of the following constants to set the attributes of a file:

Constant Value Description
VbNormal 0 Normal
VbReadOnly 1 Read-only
VbHidden 2 Hidden
VbSystem 4 System
VbArchive 32 File has changed since last backup

• Each global constant has a corresponding constant in the FileAttribute enumeration. For
example, vbNormal is identical to FileAttribute.Normal. The file-attribute constants
vbDirectory, vbAlias, and vbVolume cannot be used when assigning attributes.

• File-attributes constants can be Ored to set more than one attribute at the same time. For
example:

SetAttr "SysFile.Dat", FileAttribute.System Or FileAttribute.Hidden

• pathname can include a drive letter. If a drive letter is not included in pathname, the current
drive is assumed. The file path can be either a fully qualified path or a relative path from the
current directory.

• pathname can include a folder name. If the folder name is not included in pathname, the
current folder is assumed.

• Attempting to set the attributes of an open file will generate a runtime error.

Example
Private Sub AddAttributes(strFN As String, _
 intNewAttrib As Integer)

 539

Dim intAttrib As Integer

intAttrib = GetAttr(strFN)
intAttrib = intAttrib Or intNewAttrib
SetAttr(strFN, intAttrib)

End Sub

Programming Tips and Gotchas

• Setting file attributes simultaneously clears any attributes that are not set with the SetAttr
procedure. For example, if SysFile.Dat is a read-only, hidden, system file, the statement:

SetAttr "sysfile.dat", VbArchive

sets the archive attribute but clears the read-only, hidden, and system attributes. Clearly, this
can have disastrous implications. To retain a file's attributes while setting new ones, first
retrieve its attributes using the GetAttr function, as the example program illustrates.

• Setting a file's attributes to VbNormal clears all file attributes.
• Not all attribute values can be assigned to a file; many are assigned only by the operating

system. For example, FileAttribute.Directory cannot be assigned to an existing
directory or a file. Thus, when setting the attribute value of a file or directory, you must mask
out these (or any other) illegal values. For example, the following code fragment shows how to
do this in the case of a directory:

• Private Sub AddAttributes(strFN As String, _
• intNewAttrib As Integer)
•
• Dim intAttrib As Integer
•
• intAttrib = GetAttr(strFN)
•
• ' If directory, mask out directory flag
• If intAttrib And FileAttribute.Directory Then
• intAttrib = intAttrib And &HFFFFFFEF
• End If
•
• intAttrib = intAttrib Or intNewAttrib
• SetAttr(strFN, intAttrib Or intNewAttrib)
•

End Sub

See Also

GetAttr Function

Shadows Keyword

Syntax
Shadows

 540

Description

Indicates that a derived class member is hidden if its class is assigned to an instance of its base class.
Calls to the shadowed method when made through the base class see the base class implementation
rather than the shadowed implementation.

Example
Public Class Employee

Protected strName As String

Public Overridable Property Name() As String
 Get
 Name = strName
 End Get
 Set
 strName = Value
 End Set
End Property

End Class

Public Class Attorney
 Inherits Employee

Public Overrides Property Name() As String
 Get
 If Instr(1, strName, "Esq") = 0 Then
 Return strName & ", Esq."
 Else
 Return strName
 End If
 End Get
 Set
 If Instr(1, Value, "Esq") = 0 Then
 strName = Value & ", Esq."
 Else
 strName = Value
 End If
 End Set
End Property

End Class

Public Class Partner
 Inherits Attorney

Public Shadows Property Name() As String
 Get
 If Instr(1, strName, "Partner") = 0 Then
 Return strName & ", Partner"
 Else
 Return strName
 End If
 End Get
 Set
 strName = Value
 End Set
End Property

 541

End Class
Module modMain

Public Sub Main

Dim oEmp As New Employee
oEmp.Name = "Jon"
Console.WriteLine(oEmp.Name)

Dim oAtt As New Attorney
Dim oEmp2 As Employee
oAtt.Name = "John"
Console.WriteLine(oAtt.Name)
oEmp2 = oAtt
Console.WriteLine(oEmp2.Name)

Dim oPart As New Partner
Dim oAtt2 As Attorney
oPart.Name = "Jack"
Console.WriteLine(oPart.Name)
oAtt2 = oPart
Console.WriteLine(oAtt2.Name)

End Sub

End Module

VB .NET/VB 6 Differences

The Shadows keyword is new to VB .NET.

Shell Function

Class

Microsoft.VisualBasic.Interaction

Syntax
Shell(pathname[,style][, Wait][, Timeout])
pathname

Use: Required

Data Type: String

Name of the program to execute

style

Use: Optional

Data Type: AppWinStyle enumeration

 542

The style of window and whether it receives the focus; see Rules at a Glance.

Wait

Use: Optional

Data Type: Boolean

Boolean indicating whether to wait for the pathname application to finish execution before
continuing execution of subsequent code

Timeout

Use: Optional

Data Type: Integer

If Wait is True, number of milliseconds to wait for the pathname application to terminate
before the Shell function times out

Return Value

An Integer representing the Process ID, or 0

Description

Launches another application and, if successful, returns that application's task ID

Rules at a Glance

• pathname can include a drive letter. If a drive letter is not included in pathname, the current
drive is assumed.

• pathname can include a folder name. You can use either a fully qualified path (i.e., starting
from the root directory) or a relative path (i.e., starting from the current directory). If the folder
name is not included in pathname, the current folder is assumed.

• pathname can include any command-line arguments and switches required by the application.
For example:

Shell("notepad.exe c:\data.txt", AppWinStyle.NormalFocus)

launches Notepad, which loads the file data.txt.

• Visual Basic includes the following intrinsic constants for setting the style argument:

AppWinStyle.Hide

Value: 0

New application window is hidden

Focus: New application

AppWinStyle.NormalFocus

 543

Value: 1

New application window is shown in its original position and size

Focus: New application

AppWinStyle.MinimizedFocus

Value: 2

New application window is displayed as an icon

Focus: New application

AppWinStyle.MaximizedFocus

Value: 3

New application window is maximized

Focus: New application

AppWinStyle.NormalNoFocus

Value: 4

New application window is shown in its original position and size

Focus: Current application

AppWinStyle.MinimizedNoFocus

Value: 6

New application window is displayed as an icon

Focus: Current application

• The default when no style is specified is AppWinStyle.MinimizedFocus (2).
• If the application named in pathname executes successfully, Shell returns the windows task

ID of the program. (The task ID is better known as the process ID or PID, a unique 32-bit
value used to identify each running process.) It can be used as a parameter to the
AppActivate procedure to give the application the focus—and possibly to control it remotely
using the Send and SendWait methods. The process ID is also required by a number of
Win32 API calls.

• If the application named in pathname fails to execute, a runtime error is generated.
• The file launched by Shell must be executable. That is, it must be a file whose extension

is .EXE or .COM (an executable file), .BAT (a batch file), or .PIF (a DOS shortcut file).
• Wait determines whether the Shell function operates synchronously (True) or

asynchronously (False). The default is False; control returns to the application, and code
continues executing as soon as the process ID is known. If True, the Shell function returns
only when the pathname application is closed or, if Timeout is not -1, when the timeout
period has expired.

• If Wait is False, the Shell function returns the application's process ID. If Wait is True, it
returns either the process ID (if control returns to the application because Timeout has

 544

elapsed) or 0 (if control returns to the application because the pathname application has been
closed). In this latter case, Shell returns a 0 because, since the pathname application has
been closed, its process ID is no longer valid.

• Timeout applies only when Wait is True. It defines the number of milliseconds that the
application will wait for the pathname application to end before the wait is abandoned and
application code resumes execution. Its default value is -1, which means that there is no
timeout value and control returns to the application only when the pathname application has
terminated.

Programming Tips and Gotchas

• Wait is a long-needed addition to the Shell function that allows your application to know when
the launched application has terminated.

• The Shell function does not use file associations. You cannot, for example, supply
MyReport.Doc as the pathname in the hope that VB will load Microsoft Word, which in turn
will load MyReport.Doc.

• Setting Wait to True and leaving Timeout at its default value of -1 creates the possibility
that control will never return from the pathname application to the VB .NET application.

VB .NET/VB 6 Differences

The Wait and Timeout arguments are new to VB .NET. They are not supported by VB 6.

Sign Function

Class

System.Math

Syntax
Sign(value)
value

Use: Required

Data Type: Any numeric type, including Decimal

A numeric expression

Return Value

Integer

Description

Determines the sign of a number

Rules at a Glance

 545

The return value of the Sign function is determined by the sign of value, as follows:

If number is Sign returns
Positive 1
Zero 0
Negative -1

Programming Tips and Gotchas

• Sign is useful in cases in which the sign of a quantity defines the sign of an expression. For
example:

lngResult = lngQty * Sgn(lngValue)

• This is a Shared member, so it can be used without creating any objects.
• If you are using the Sign function to evaluate a result to False (0) or True (any nonzero

value), you could use the CBool function instead.
• A major use for Sign is to determine the sign of an expression.

VB .NET/VB 6 Differences

The name of this function has changed. In VB 6, it is named Sgn. In VB .NET, it is named Sign and is
a member of the Math class of the System namespace.

See Also

If...Then...Else Statement

Sin Function

Class

System.Math

Syntax
Sin(a)
a

Use: Required

Data Type: Numeric

An angle expressed in radians

Return Value

A Double containing the sine of an angle

 546

Description

Returns the ratio of two sides of a right triangle in the range -1 to 1

Rules at a Glance

• The ratio is determined by dividing the length of the side opposite the angle by the length of
the hypotenuse.

• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

• You can convert degrees to radians using the formula:

radians = degrees * (pi/180)

• You can convert radians to degrees using the formula:

degrees = radians * (180/pi)

See Also

Cos Function, Tan Function

Sinh Function

Class

System.Math

Syntax
Math.Sinh(value)
value

Use: Required

Data Type: Double or numeric expression

An angle in radians

Return Value

A Double denoting the hyperbolic sine of the angle

Description

Returns the hyperbolic sine of an angle

 547

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Sinh function is new to the .NET Framework.

See Also

Cosh Function, Tanh Function

SLN Function

Class

Microsoft.VisualBasic.Financial

Syntax
SLN(cost, salvage, life)
cost

Use: Required

Data Type: Double

The initial cost of the asset

salvage

Use: Required

Data Type: Double

The value of the asset at the end of its useful life

life

Use: Required

Data Type: Double

The length of the useful life of the asset

Return Value

A Double representing depreciation per period

Description

 548

Computes the straight-line depreciation of an asset for a single period

Rules at a Glance

• The function uses a very simple formula to calculate depreciation:

(cost - salvage) / life

• The depreciation period is determined by the time period of life.
• All arguments must be positive numeric values.

See Also

DDB Function, SYD Function

Space Function

Class

Microsoft.VisualBasic.Strings

Syntax
Space(number)
number

Use: Required

Data Type: Integer

An expression evaluating to the number of spaces required

Return Value

A String containing number spaces

Description

Creates a string containing number spaces

Rules at a Glance

While number can be zero (in which case the function returns the empty string), runtime error 5,
"Invalid procedure call or argument," is generated if number is negative.

Programming Tips and Gotchas

The Space function is most useful for creating a string buffer, an area where an external function can
write data to be returned to the calling program.

 549

Spc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
Spc(n)
n

Use: Required

Data Type: Integer

The number of spaces required

Return Value

A String containing n spaces

Description

Inserts spaces between expressions in a Print or PrintLine procedure

Rules at a Glance

• Spc can only be used with the Print or PrintLine procedure.
• If the width of the device being printed to is greater than n, the print position is set to

immediately after the number of spaces printed by the Spc function.
• If the width of the device being printed to is less than n, the print position is set to the current

position plus the result of the formula n Mod devicewidth.
• If n is greater than the difference between the current print position and the width of the device,

Spc inserts a line break and then inserts spaces in accordance with the following formula:

n - (devicewidth - currentposition)

• When using a proportional font, the Spc function uses the average width of all characters for
that particular font to determine the width of the space character to print.

Programming Tips and Gotchas

• When the number of fixed-width columns is important, you should use either the Space or the
Tab function, since there is not necessarily a relationship between the spaces provided by the
Spc function and fixed-width columns.

See Also

Print, PrintLine Procedures, Tab Function

 550

Split Function

Class

Microsoft.VisualBasic.Strings

Syntax
Split(expression, [delimiter[, limit[, compare]]])
expression

Use: Required

Data Type: String

A string to be broken up into multiple strings

delimiter

Use: Optional

Data Type: String

The character used to delimit the substrings in expression

limit

use: Optional

Data Type: Integer

The maximum number of strings to return

compare

Use: Optional

Data Type: CompareMethod Constant

The method of comparison. Possible values are CompareMethod.Binary (the default) or
CompareMethod.Text.

Return Value

A String array containing the substrings of expression delimited by delimiter.

Description

Parses a single string containing delimited values into an array

 551

Rules at a Glance

• If expression is a zero-length string, Split returns an empty array.
• If delimiter is not found in expression, Split returns the entire string in element 0 of the

returned array.
• If delimiter is omitted, a space character (" ") is used as the delimiter.
• If limit is omitted or its value is -1, all strings are returned.
• The default comparison method is CompareMethod.Binary.
• Once one less than limit has been reached, the remainder of the string is placed,

unprocessed, into the next element of the returned array. This is important, because it can
lead to unexpected results. For instance, the code:

• Dim s() As String
• s = Split("x y z", " ", 1, CompareMethod.Text)

Debug.WriteLine(s(0))

prints:

x y z

because the Split function stuffs the remaining portion of the original string into the last array
element. This leaves no array elements for the actual split operation. To split off the first
substring, we need to set count to at least 2:

Dim s() As String
s = Split("x y z", " ", 2, CompareMethod.Text)
Debug.WriteLine(s(0))

Programming Tips and Gotchas

• Strings are written to the returned array in the order in which they appear in expression.
• The setting of compare is important only if delimiter is an alphabetic character, in which

case CompareMethod.Binary will perform a case-sensitive comparison, and
Compare.Method.Text will perform a case-insensitive one.

See Also

Join Function

Sqrt Function

Class

System.Math

Syntax
Sqr(d)
d

Use: Required

 552

Data Type: Double

Any numeric expression greater than or equal to 0

Return Value

A Double containing the square root of d

Description

Calculates the square root of a given number

Rules at a Glance

• d must be equal to or greater than zero, or runtime error 5, "Invalid procedure call or
argument," occurs.

• This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The square root function in VB 6 is named Sqr, and it is an intrinsic VB function. In the .NET
Framework, it is named Sqrt, and it is a member of the Math class in the System namespace.

Stack Class

Namespace

System.Collections

Createable

Yes

Syntax
Dim stackvariable As [New] Stack
stackvariable

Use: Required

Data Type: Stack object

The name of the Stack object

Description

A Stack object is a model of a stack.

Succinctly put, a stack is a last-in, first-out data structure. (This is often abbreviated LIFO.) Put another
way, a stack is a data structure that models a stack of items (like a stack of dinner plates). There is a

 553

method for inserting items at the top of the stack (pushing) as well as a method for removing the item
that is currently at the top of the stack (popping). Under this scenario, the next item to be popped is the
item that was placed in line last—hence the phrase, last-in, first-out.

Note that the elements in a Stack object are of type Object.

Stack class members marked with a plus sign (+) ae discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +

IsReadOnly

IsSynchronized

SyncRoot

Public Instance Methods

Clear +

Clone

Contains +

CopyTo +

Equals

GetEnumerator

GetHashCode

GetType

Peek +

Pop +

Push +

ToArray +

ToString

Example
' Define a new stack
Dim s As New Stack()
' Push some items onto the stack

 554

s.Push("Chopin")
s.Push ("Mozart")
s.Push ("Beethoven")
' Is an item in the stack?
MsgBox("Beethoven in stack: " & CStr(s.Contains("Beethoven")))
' Peek at the first (top) item on the stack
MsgBox("First item in stack is: " & s.Peek.ToString)
' Send stack to an array and display all items
Dim s() As Object = s.ToArray()
Dim i As Integer
For i = 0 To UBound(s)
 Debug.WriteLine(CStr(s(i)))
Next
' Clear stack
s.Clear()

VB .NET/VB 6 Differences

The Stack object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Queue Class

Stack.Clear Method

Class

System.Collections.Stack

Syntax
stackvariable.Clear()

Return Value

None

Description

Removes all entries from the stack.

See Also

Stack.Pop Method

Stack.Contains Method

 555

Class

System.Collections.Stack

Syntax
stackvariable.Contains(obj)
obj

Use: Required

Data Type: Any

The value to search for in the stack

Return Value

Boolean (True or False) indicating whether obj is found in the stack

Description

Returns a Boolean indicating whether a given element (Object) is somewhere in the stack

Rules at a Glance

• obj must correspond exactly to an item in the stack for the method to return True.
• String comparison is case sensitive and is not affected by the setting of Option Compare.
• The Contains method searches the stack sequentially. In other words, its performance is

inversely proportional to the number of items in the stack.

Programming Tips and Gotchas

• In comparing objects in the stack with obj, the Contains method in turn calls the BCL's
Object.Equals method to perform the comparison. The Equals method returns True if two
object instances are the same instance.

Stack.CopyTo Method

Class

System.Collections.Stack

Syntax
stackvariable.CopyTo(array, index)
array

Use: Required

Data Type: Array of Objects

 556

Array to which to copy the stack's objects

index

Use: Required

Data Type: Integer

The index of the first array element to receive an element of the stack

Return Value

None

Description

Copies the stack elements into an array, starting at a specified array index

Rules at a Glance

• The array can be of any data type that is compatible with the stack elements. Thus, for
instance, we cannot use an Integer array to hold stack elements that are strings (that is,
Objects whose subtype is String).

• The array must be sized to accommodate the elements of the stack prior to calling the CopyTo
method.

Example
Public Sub Main

' Define a new stack
Dim s As New Stack()
Dim aStack(), oItem As Object

' Push some items onto stack
s.Push("Chopin")
s.Push("Mozart")
s.Push("Beethoven")

' Size the array and copy to it
Redim aStack(s.Count - 1)
s.CopyTo(aStack, 0)

For Each oItem in aStack
 Console.WriteLine(oItem)
Next

End Sub

See Also

Stack.ToArray Method

Stack.Count Property

 557

Class

System.Collections.Stack

Syntax
stackvariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the stack.

Stack.Peek Method

Class

System.Collections.Stack

Syntax
stackvariable.Peek()

Return Value

Object

Description

Returns the first item in the stack as an Object, but does not remove it from the stack

Programming Tips and Gotchas

The Peek method is similar to the Stack object's Pop method, except that it leaves the stack intact.

See Also

Stack.Pop Method

Stack.Pop Method

 558

Class

System.Collections.Stack

Syntax
stackvariable.Pop()

Return Value

Object

Description

Removes the top item from the stack and returns it as an Object

Rules at a Glance

• Pop removes the top item from the stack and decrements the Count property by one.
• Pop generates an error if applied to an empty stack. Thus, it's advisable to determine when a

stack is empty by using the Count property before popping the stack.

Programming Tips and Gotchas

The Peek method returns a reference to the object at the top of the stack, but unlike the Pop method,
does not remove it from the stack.

See Also

Stack.Clear Method, Stack.Peek Method

Stack.Push Method

Class

System.Collections.Stack

Syntax
stackvariable.Push(obj)
obj

Use: Required

Data Type: Object

The item to place in the stack

Return Value

 559

None

Description

Places an Object on the top of the stack

Rules at a Glance

The Push method adds an item to the top of the stack and increases the Count property by 1.

Stack.ToArray Method

Class

System.Collections.Stack

Syntax
stackvariable.ToArray()

Return Value

An Array of type Object

Description

Creates an array of type Object, copies the elements of the stack in order, and then returns the array

Programming Tips and Gotchas

Unlike the CopyTo method, the ToArray method does not require that we define an array in advance.
However, we cannot specify the starting array index for the copy procedure.

See Also

Stack.CopyTo Method

Static Statement

Syntax
Static varname[([subscripts])] [As [New] type] _
 [,varname[([subscripts])] [As [New] type]] . . .
varname

Use: Required

 560

Data Type: Any

The name of the variable, following Visual Basic naming conventions

subscripts

Use: Optional

Data Type: Integer

Denotes varname as an array and specifies the dimension and upper bounds of the array

New

Use: Optional

Type: Keyword

Used to automatically create an instance of the object referred to by the object variable,
varname

type

Use: Optional

Type: Keyword

Data type of the variable varname

Description

Used at procedure level to declare a Static variable and to allocate the relevant storage space in
memory. Static variables retain their value between calls to the procedure in which they are declared.

Rules at a Glance

• A Static variable's scope is limited to the procedure in which it is created.
• The subscripts argument has the following syntax:

upperbound [, upperbound]

• Using the subscripts argument, you can declare up to 60 multiple dimensions for the array.
• The New keyword specifies that a new instance of the object will be created. Use of the New

keyword in the Static statement therefore eliminates the subsequent need to instantiate the
object.

• You cannot use the New keyword to declare variables of any intrinsic data type or to declare
instances of dependent objects.

• If you don't use the New keyword with an object variable, you must use an assignment
statement to assign an existing object to the variable before you can use the variable.

• datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long,
Object, Short, Single, String, a user-defined type, or an object type.

• If you don't specify datatype, the variable will be cast as an Object.

 561

• When multiple variables are declared on the same line, if a variable is not declared with a
explicit type declaration, then its type is that of the next variable with an explicit type
declaration. Thus, in the line:

Static x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type
Variant.)

• When a static variable is initialized on the same line as its declaration, the initialization
process is performed only the first time the declaration line is encountered. (Otherwise, the
variable would not be static.)

• VB .NET permits the initialization of variables in the same line as their declaration (at long
last!). Thus, we may write:

Static x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more
than one variable on a single line:

Static x As Integer = 6, y As Integer = 9

• Variables that are not explicitly initialized by the Static statement have the following default
values:

Data type Initial value
All numeric types 0
Boolean False

Date 01/01/0001 12:00:00 AM
Decimal 0

Object Nothing

String Zero-length string ("")

• Static variables can have procedure-level scope or block-level scope. Static variables with
procedure-level scope last the lifetime of the application, but they are accessible only within
the procedure in which they are defined. Static variables with block-level scope last the
lifetime of the application, but they are accessible only within the code block (such as a
looping construct or an If statement) in which they are defined.

Programming Tips and Gotchas

• It is a recognized programming practice when using the Static statement in a procedure to
put the Static statement at the beginning of that procedure.

• Although their value persists between calls to a procedure, Static variables do not have scope
outside of the procedure in which they are created.

• For more on static variables, see Chapter 2.

VB .NET/VB 6 Differences

• When multiple variables are declared on a single line of code in VB 6, variables not explicitly
assigned a data type are cast as variants. For example, in the statement:

Static Var1, Var2, Var3 As String

 562

both Var1 and Var2 are variants rather than strings. In VB .NET, the type declaration applies
to all undeclared variables since the last explicit type declaration. So the previous statement in
VB .NET would cast Var1, Var2, and Var3 as strings.

• In VB 6, declaring and initializing variables are separate steps; aside from allowing VB to
assign variables their default values, variables cannot be initialized at the same time they are
declared. In VB .NET, variables can be assigned an initial value when they are declared.

• VB 6 allowes you to declare fixed-length strings; they are not supported, however, in VB .NET.
• VB 6 allows you to define the lower bound of an array when it is initialized. In VB .NET, all

arrays have a lower bound of 0. Hence, the VB 6 syntax:

Static array(1 To 20) As String

is not supported in VB .NET.

• In VB 6, arrays are either fixed length or dynamic; in VB .NET, all arrays are dynamic.
• In VB 6, it is possible to define a procedure or a function as Static, meaning that all local

variables defined in that routine are static. In VB .NET, the use of the Static keyword with
the Function or Sub statements is not supported.

See Also

Dim Statement

Stop Statement

Syntax
Stop

Description

Suspends program execution

Rules at a Glance

• There is no limit to the number and position of Stop statements within procedures.
• The Stop statement acts like a breakpoint—placing the program in break mode and

highlighting the current line in the development environment—allowing you to step through the
code line by line.

Programming Tips and Gotchas

• Stop is intended primarily for use in the design-time environment, where it suspends program
execution without terminating it. In the runtime environment, however, Stop will cause the
debugger to be invoked.

• Unlike the End statement, Stop does not explicitly close any open files or clear any variables,
except in a compiled executable.

See Also

 563

End Statement

Str Function

Class

Microsoft.VisualBasic.Conversion

Syntax
Str(number)
number

Use: Required

Data Type: Numeric

Any valid numeric expression or expression capable of conversion to a number

Return Value

A String representation of number

Description

Converts number from a numeric to a string

Rules at a Glance

• If the conversion of number to a string cannot be made, an InvalidCastException error occurs.
To prevent this, you can check the value of number by passing it to the IsNumeric function
before calling Str.

• If number is not a numeric value or is not capable of conversion to a number (so that it can in
turn be converted to a string), an InvalidCastException exception occurs.

• If the return value is positive, the Str function always includes a leading space in the returned
string for the sign of number.

Programming Tips and Gotchas

• Use the LTrim function to remove the leading space that the Str function adds to the start of
the returned string.

• Both the CStr and Format functions have now superceded the Str function. The CStr function
does not add a leading space for the sign of a positive number. Both the CStr and the Format
functions are internationally aware, able to recognize decimal delimiters other than the period
(.).

See Also

CStr Function

 564

StrComp Function

Class

Microsoft.VisualBasic.Strings

Syntax
StrComp(string1, string2[, compare])
string1

Use: Required

Data Type: String

Any string expression

string2

Use: Required

Data Type: String

Any string expression

compare

Use: Optional

Data Type: CompareMethod constant

Either CompareMethod.Binary or CompareMethod.Text

Return Value

Integer

Description

Determines whether two strings are equal and, if not, which of two strings has the greater value

Rules at a Glance

• The compare argument is one of CompareMethod.Binary or CompareMethod.Text. If
no comparison is specified, VB uses the value of Option Compare.

• The following table describes the possible return values from the StrComp function:

Scenario Return value
string1 < string2 -1

 565

string1 = string2 0
string1 > string2 1
string1 or string2 is Null Null

Programming Tips and Gotchas

• Using the comparison operators <, <=, >, and >= to compare strings performs a character-by-
character binary comparison.

• The StrComp function can provide a significant performance improvement (in the
neighborhood of 30% to 70%) over the comparison operators.

See Also

StrConv Function, StrDup Function, StrReverse Function

StrConv Function

Class

Microsoft.VisualBasic.Strings

Syntax
StrConv(str, conversion[, localeID])
str

Use: Required

Data Type: String

The string expression to convert

conversion

Use: Required

Data Type: Constant of the VbStrConv enumeration

One of the constants listed in Rules at a Glance.

localeID

Use: Optional

Data Type: Integer

The locale identifier to use for the conversion

Return Value

 566

A String converted according to conversion.

Description

Performs special conversions on a string

Rules at a Glance

• The following intrinsic conversion constants specify the type of conversion to perform:

Constant Converts...
VbStrConv.UpperCase The entire string to uppercase.
VbStrConv.LowerCase The entire string to lowercase.

VbStrConv.ProperCase The first letter of every word in str to an uppercase
character.

VbStrConv.Wide Narrow (single-byte) characters in str to wide (double-
byte) characters.

VbStrConv.Narrow Wide (double-byte) characters in str to narrow (single-
byte) characters.

VbStrConv.Katakana Hiragana characters in str to Katakana characters.
VbStrConv.Hiragana Katakana characters in str to Hiragana characters.

VbStrConv.LinguisticCasing Uses linguistic rules for casing. Can be used only with
UpperCase and LowerCase.

VbStrConv.None Performs no conversion on str.

VbStrConv.SimplifiedChinese Traditional Chinese characters in str to Simplified
Chinese.

VbStrConv.TraditionalChinese Simplified Chinese characters in str to Traditional
Chinese.

• You can combine some of these constants by adding them together or using a logical OR. For
example:

VbStrConv.UpperCase + VbStrConv.Wide

• The only restriction is that the constants must be mutually exclusive. For example, specifying
the value:

VbStrConv.UpperCase Or VbStrConv.ProperCase ' Error

will produce an error.

• VbStrConv.Katakana and VbStrConv.Hiragana only apply to locales in Japanese. Use
of these constants on systems using other locales generates runtime error 5, "Invalid
procedure call or argument."

• VbStrConv.Wide and VbStrConv.Narrow only apply to locales in the Far East. Use of
these constants on systems using other locales will generate a runtime error.

• When determining the start of a new word to convert to proper case, StrConv recognizes the
following characters as word separators:

o Null—Chr$(0)
o Horizontal Tab—Chr$(9)
o Line-feed—Chr$(10)
o Vertical Tab—Chr$(11)
o Form Feed—Chr$(12)

 567

o Carriage Return—Chr$(13)
o Space—Chr$(32)

Programming Tips and Gotchas

If you convert to proper case, StrConv converts the first letter of each word to uppercase regardless of
whether that word is significant. Hence, "this is the time" becomes "This Is The Time," even though
"the" ordinarily would not be capitalized.

VB .NET/VB 6 Differences

Two conversion values supported by VB 6, VbUnicode and VbFromUnicode, have no equivalent
in the VbStrConv enumeration. As a result, the function can no longer be used to convert ASCII to
Unicode or Unicode to ASCII.

See Also

StrComp Function, StrDup Function, StrReverse Function

StrDup Function

Class

Microsoft.VisualBasic.Strings

Syntax
StrDup(number,character)
number

Use: Required

Data Type: Integer

The number of times to duplicate the first character in string

character

Use: Required

Data Type: String, Char, or Object containing a String or Char

The String or Char whose first character is to be duplicated

Return Value

A String containing the character duplicated the specified number of times

Description

 568

Returns a string that consists of the first character of character duplicated number times

Example

The line:

MsgBox(StrDup(Number:=5, Character:="ABC"))

displays "AAAAA".

VB .NET/VB 6 Differences

The StrDup function is new to VB .NET. It appears in part to be a replacement for the String function.

StrReverse Function

Class

Microsoft.VisualBasic.Strings

Syntax
StrReverse(expression)
expression

Use: Required

Data Type: String

The string whose characters are to be reversed

Return Value

String

Description

Returns a string that is the reverse of the string passed to it. For example, if the string and is passed
to it as an argument, StrReverse returns the string dna.

Structure...End Structure Statement

Syntax
Public|Private|Friend] Structure StructureName
 Nonmethod member declarations

 569

 Method member declarations
End Structure

Description

Used to declare user-defined types. Structures are similar to classes, but they are value types rather
than reference types.

Rules at a Glance

• The members of a structure can be variables, properties, methods, or events. Note, however,
that each member must be declared with an access modifier: Public (or Dim), Private, or
Friend.

• You cannot assign a structure member an initial value at the same time as you declare it. As a
result, the following Structure construct is illegal:

• Structure Point
• Public x As Integer = 0 ' Illegal
• Public y As Integer = 0 ' Illegal

End Structure

• Structure members can be other structures or objects.
• If a structure member is an array, it cannot be explicitly dimensioned.
• Structures can be passed as arguments to functions or as the return type of a function.
• Although structures are similar to classes, the following class features are not supported in

structures:
o Structures cannot explicitly inherit, nor can they be inherited.
o All constructors for a structure must be parameterized.
o Structures cannot define destructors.
o Member declarations cannot include initializers, nor can they use the As New syntax

or specify an initial array size.

Example

The simplest and most common use of structures is to encapsulate related variables. For instance, we
might define a structure as follows:

Structure strPerson
 Public Name As String
 Public Address As String
 Public City As String
 Public State As String
 Public Zip As String
 Public Age As Short
End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Programming Tips and Gotchas

 570

• Related items of information are often stored in multiple arrays (or in a multidimensional array).
However, it is often preferable to store related data in a single array of structures.

• The Structure statement is often used to define a data structure capable of retrieving,
storing, and saving fixed-length records. However, this is complicated by the absence of
support for explicitly declared fixed-length strings in VB.NET. One solution is to use the
<vbFixedString(length)> attribute, where length is the fixed length of the string, when
defining a member of type String. This instructs the VB .NET compiler to enforce a particular
string length for the structure. For example:

• Structure Person
• <vbFixedString(10)> Public FName As String
• <vbFixedString(2)> Public MName As String
• <vbFixedString(10)> Public LName As String
• Public Age As Short

End Structure

VB .NET/VB 6 Differences

• The Structure...End Structure construct is new to VB .NET. It replaces the
Type...End Type construct in VB 6.

• VB 6 user-defined types are different than VB .NET structures. A VB 6 user-defined type is
simply a composite data type that combines multiple data types; it allows the user-defined
type to be treated as a contiguous, word- or double-word aligned block of memory. A VB .NET
structure is in some sense a hybrid object that combines data types and methods; ordinarily,
no assumptions should be made about its layout in memory.

• In VB 6, the declaration of user-defined type members did not permit an access modifier. In
VB .NET, it is required.

Sub Statement

Syntax
[ClassBehavior] [AccessModifier] Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub
ClassBehavior

Use: Optional

Type: Keyword

One of the keywords shown in the following table:

Keyword Description

Overloads Indicates that more than one declaration of this subroutine exists (with different
argument signatures).

Overrides For derived classes, indicates that the subroutine overrides the subroutine by the
same name (and argument signature) in the base class.

Overridable Indicates that the subroutine can be overridden in a derived class.
NotOverridable Indicates that the subroutine cannot be overridden in a derived class.
MustOverride Indicates that the subroutine must be overridden in a derived class.

 571

Shadows In a derived class definition, indicates that calls to derived class members that are
made through a base class ignore the shadowed implementation.

Shared Callable without creating an object of the class. It is, in this strange sense, shared
by all objects of the class. These are also called static subroutines.

AccessModifier

Use: Optional

The possible values of AccessModifier are Public, Private, Friend, Protected, or
Protected Friend. The following table describes the effects of the various access modifiers.
Note that "direct access" refers to accessing the member without any qualification, as in:

classvariable = 100

and "class/object access" refers to accessing the member through qualification, either with the
class name or the name of an object of that class. For more information, see Section 3.7 in
Chapter 3.

 Direct access scope Class/object access scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects
name

Use: Required

Type: String literal

The name of the Sub procedure.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the sub procedure as arguments from the
calling procedure.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] _
 [As type] [= defaultvalue]
Optional

Use: Optional

Type: Keyword

An optional argument is one that need not be supplied when calling the function. However, all
arguments following an optional one must also be optional. A ParamArray argument cannot
be optional.

 572

ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, the local copy of the variable is assigned the value
of the argument. ByVal is the default method of passing variables.

ByRef

Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable will be also reflected in the
calling argument.

ParamArray

Use: Optional

Type: Keyword

Indicates that the argument is an optional array of variants containing an arbitrary number of
elements. It can only be used as the last element of the argument list, and it cannot be used
with the ByRef, ByVal, or Optional keywords.

varname

Use: Required

Type: String literal

The name of the local variable containing either the reference or value of the argument.

type

Use: Optional

Type: Keyword

The data type of the argument. It can be Boolean, Byte, Char, Date, Decimal, Double, Integer,
Long, Object, Short, Single, String, a user-defined type, or an object type.

defaultvalue

Use: Optional

Data Type: Any

For optional arguments, you must specify a default value.

statements

 573

Use: Optional

Program code to be executed within the procedure.

Description

Defines a subroutine

Rules at a Glance

• Subroutines cannot be nested; that is, you cannot define one subroutine inside another
subroutine. (This applies to all procedures.)

• If you do not include one of the accessmodifier keywords, a subroutine will be Public by
default.

• Any number of Exit Sub statements can be placed within the subroutine. Execution will
continue with the line of code immediately following the call to the subroutine.

• If you specify an optional parameter in your subroutine declaration, you must also provide a
default value for that parameter. For example:

• Private Sub ShowMessage(Optional sMsg _
 As String = "Not given")

• A subroutine is called by using its name and enclosing any arguments in parentheses. For
example, a routine named SomeRoutine might be called as follows:

• x = 12
• y = 12

SomeRoutine(x, y)

Note that because it does not return a value, a subroutine cannot be assigned to a variable.
For example, the following is illegal:

z = SomeRoutine(x, y)

Programming Tips and Gotchas

There is often confusion between using the ByRef and ByVal methods of assigning arguments to the
Sub procedure. ByRef assigns the reference of the variable in the calling procedure to the variable in
the Sub procedure; that is, it passes a pointer containing the address in memory of the variable in the
calling procedure. As a result, any changes made to the variable from within the Sub procedure are in
reality made to the variable in the calling procedure. On the other hand, ByVal assigns the value of
the variable in the calling procedure to the variable in the Sub procedure; that is, it makes a separate
copy of the variable in a separate memory location. Changes made to the variable in the Sub
procedure have no effect on the variable in the calling procedure. In general, ByRef arguments within
class modules take longer to handle, since marshaling back and forth between Sub procedure and
calling module must take place. So unless you explicitly need to modify a variable's value within a Sub
procedure, it's best to pass parameters by value.

VB .NET/VB 6 Differences

• If you do not specify whether an individual element in arglist is passed ByVal or ByRef, it
is passed by reference in VB 6. In VB .NET, it is passed by value.

• If a parameter array is used in VB 6, it is an array of variants. In VB .NET, since the Variant is
no longer supported, it must be an array of objects.

• In VB 6, a Sub procedure was called either by using the Call statement and including
procedure arguments in parentheses or by using the name of the procedure and including

 574

arguments without parentheses. VB .NET features a standard calling syntax in which
arguments are always enclosed in parentheses.

See Also

Function Statement

Switch Function

Class

Microsoft.VisualBasic.Interaction

Syntax
Switch(expr-1, value-1[, expr-2, value-2 ... [, _
 expr-n,value-n]])
expr

Use: Required

Data Type: Object

A number of expressions to be evaluated

value

Use: Required

Data Type: Object

An expression or value to return if the associated expression evaluates to True

Return Value

An Object value or expression

Description

Evaluates a list of expressions and, on finding the first expression to evaluate to True, returns an
associated value or expression

Rules at a Glance

• A minimum of two expression/value pairs is required; additional pairs are optional.
• Expressions are evaluated from left to right.
• If none of the expressions is True, the Switch function returns Nothing.
• If multiple expressions are True, Switch returns the value that corresponds to the first True

expression.
• value can be a constant, variable, or expression.

 575

Example

The GetTextColor function uses the Switch function to return an RGB color value that depends on the
sign of the integer passed to it as a parameter. To access the Color structure, it imports the
System.Drawing namespace of the Base Class Library.

Private Function GetTextColor(lValue As Integer) As Integer

Dim fColor As New Color
Dim iColor As Integer
fColor = Switch(lValue > 0, Color.Blue, _
 lValue = 0, Color.Black, _
 lValue < 0, Color.Red)

' Convert color name to RGB color and strip out
' high order byte of high-order word
iColor = fColor.ToArgb and &H00FFFFFF
GetTextColor = iColor

End Function

Programming Tips and Gotchas

The Switch function can prove to be an efficient alternative to If...Then...Else statements, but it
can't be used in situations where multiple lines of code are required to be executed on finding the first
True expression.

Programming Tips and Gotchas

Switch does not use short-circuiting. That is, even though it returns only the first True expression, it
evaluates all expressions. As a result, Switch will generate a runtime error if any of these expressions
are invalid.

See Also

Choose Function

SYD Function

Class

Microsoft.VisualBasic.Financial

Syntax
SYD(cost, salvage, life, period)
cost

Use: Required

Data Type: Double

 576

The initial cost of the asset

salvage

Use: Required

Data Type: Double

The value of the asset at the end of its useful life

life

Use: Required

Data Type: Double

The length of the useful life of the asset

period

Use: Required

Data Type: Double

The period whose depreciation is to be calculated

Return Value

A Double giving the sum-of-years depreciation of an asset for a given period

Description

Computes the sum-of-years' digits depreciation of an asset for a specified period. The sum-of-years'
digits method allocates a larger amount of the depreciation in the earlier years of the asset.

Rules at a Glance

• life and period must be expressed in the same time unit. For example, if life represents
the life of the asset in years, period must be a particular year for which the depreciation
amount is to be computed.

• All arguments must be positive numeric values.
• To calculate the depreciation for a given period, SYD uses the formula:

(Cost-Salvage)*((Life-Period + 1)/(Life*(Life + 1)/2))

See Also

DDB Function, SLN Function

SyncLock Statement

 577

Syntax
SyncLock expression
...[code]
End SyncLock
expression

Use: Required

Type: Any reference type (class, module, interface, array, or delegate)

An expression yielding a single result that can be used to determine the accessibility of code

code

Use: Optional

The code statements to which access is synchronized and that will be executed sequentially

Description

Prevents multiple threads of execution in the same process from accessing shared data or resources
at the same time

Rules at a Glance

SyncLock blocks a thread's access only if that thread belongs to the same object instance.

Programming Tips and Gotchas

• The SyncLock statement wraps a call to the BCL's System.Threading.Monitor.Enter method.
• The BCL includes a number of other synchronization mechanisms, all of which are located in

the System.Threading namespace.

VB .NET/VB 6 Differences

The SyncLock statement is new to VB .NET. VB 6 provided the developer with no direct means of
controlling threads of execution in applications or components.

SystemTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax
SystemTypeName(vbname)
vbname

Use: Required

 578

Type: String

The name of a VB .NET data type

Return Value

A String indicating the name of a CTS data type

Description

Returns the name of the Common Type System (CTS) data type that corresponds to a particular
Visual Basic data type

Rules at a Glance

• vbname must be the name of a valid VB .NET data type, such as Boolean, Byte, Char, Date.
Decimal, Double, Integer, Long, Object, Short, Single, or String.

• If vbname is not a valid VB .NET data type, the function returns Nothing.
• If vbname does not directly correspond to a CTS data type, the function returns Nothing. For

example, user-defined types created with the Structure construct and classes created with
the Class construct both return Nothing if their data type names are passed to the function.

Example
Public Structure Point
 Dim x As Integer
 Dim y As Integer
End Structure

Public Class CEmployee

End Class

Module modMain

Public Sub Main

' Returns System.Int32
Dim i As Integer = 100
Console.WriteLine("Type of i: " & SystemTypeName(TypeName(i)))

' Returns Nothing
Dim o As Object
Console.WriteLine("Type of o: " & SystemTypeName(TypeName(o)))

' Returns Nothing
Dim oEmp As New CEmployee
Console.WriteLIne("Type of oEmp: " & SystemTypeName(TypeName(oEmp)))

' Returns Nothing
Dim uPt As Point
Console.Writeline("Type of uPt: " & SystemTypeName(TypeName(uPt)))

' Returns System.String
Dim sName As String = "This is a string."
Console.WriteLine("Type of sName: " & SystemTypeName(TypeName(sName)))

End Sub

 579

End Module

Programming Tips and Gotchas

• To determine the CTS data type of a particular variable, pass the variable as an argument to
the TypeName function, and pass its return value as an argument to the SystemTypeName
function. For example:

strType = SystemTypeName(TypeName(myVar))

• The existence of the SystemTypeName function clearly indicates that VB .NET data types are
wrappers for CTS data types.

VB .NET/VB 6 Differences

The SystemTypeName function is new to VB .NET.

See Also

TypeName Function, VbTypeName Function

Tab Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
Tab[(column)]
column

Use: Optional

Data Type: Short

A column number to which the insertion point will move before displaying or printing the next
expression

Return Value

A TabInfo structure

Description

Moves the text-insertion point to a given column or to the start of the next print zone

Rules at a Glance

 580

• If the column argument is omitted, the text-insertion point will be moved to the beginning of
the next print zone.

• The value of column determines the behavior of the insertion point:

Value of
column Position of insertion point

Current column
> column Moves one line down to the column column.

column >
Output Width

Uses the formula column Mod width. If the result is less than the current insertion
point, the insertion point will move down one line; otherwise, the insertion point will
remain on the same line.

< 1 Column 1

• The left hand column is always 1.
• When expressions are output to files using the Print or PrintLine statement, the width of

the output is determined by the Width statement.
• When output surface is divided into columns, the width of each column is the average width of

all characters in the current point size of the current font. This means that the number of
columns for tabulation purposes does not necessarily relate to the number of characters that
can be printed across the width of the output surface.

Programming Tips and Gotchas

The Tab function without a column argument is useful when outputting data to a file using the Print
or PrintLine statement—especially in locales where the comma would be recognized as a decimal
separator.

See Also

Spc Function

Tan Function

Class

System.Math

Syntax

Tan(a)

a

Use: Required

Data Type: Double

An angle in radians

 581

Return Value

A Double containing the tangent of an angle

Description

Returns the ratio of two sides of a right angle triangle

Rules at a Glance

• The returned ratio is derived by dividing the length of the side opposite the angle by the length
of the side adjacent to the angle.

• This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

• You can convert degrees to radians using the following formula:

radians = degrees * (pi/180)

• You can convert radians to degrees using the following formula:

degrees = radians * (180/pi)

See Also

Cos Function, Sin Function

Tanh Function

Class

System.Math

Syntax
Math.Tanh(number)
number

Use: Required

Data Type: Double or numeric expression

An angle in radians

Return Value

A Double denoting the hyperbolic tangent of the angle

 582

Description

Returns the hyperbolic tangent of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

Tanh is new to the .NET Framework.

See Also

Cosh Function, Sinh Function

Throw Statement

Syntax
[Throw exception
exception

Use: Required

Data Type: An Exception object or an object derived from Exception

An Exception object representing the exception being thrown

Description

Throws an exception that can be handled using either structured exception handling (a Try. . . Catch
block) or unstructured exception handling (the On Error statement)

VB .NET/VB 6 Differences

The Throw statement is new to VB .NET.

See Also

Exception Class, Try...Catch...Finally Statement

TimeOfDay Property

Class

 583

Microsoft.VisualBasic.DateAndTime

Syntax
TimeOfDay

Return Value

Date value giving the current system time

Description

Sets or returns the current system time

Example

The code:

TimeOfDay() = #9:05:13 AM#

sets the system time, and the code:

MsgBox(TimeOfDay())

displays the current system time.

Rules at a Glance

The TimeOfDay property returns the time in the time format defined by the system's regional settings.

Programming Tips and Gotchas

• The TimeOfDay property includes an incorrect date, 01/01/0001, along with the time. It can be
eliminated with the Format or FormatDateTime function as follows:

• Format(TimeOfDay(), "Long Time")
FormatDateTime(TimeOfDay(), DateFormat.LongTime)

• When setting the TimeOfDay property, any date component is ignored.

See Also

Now Property

Timer Property

Class

Microsoft.VisualBasic.DateAndTime

 584

Syntax
Timer

Return Value

Double representing the number of seconds that have elapsed since midnight

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

• Timer is classified as a function in VB 6 and as a read-only property in VB .NET.
• You can use the Timer property as an easy method of passing a seed number to the

Randomize procedure, as follows:

Randomize Timer()

• The Timer property is ideal for measuring the time taken to execute a procedure or program
statement, as the following snippet shows:

• Dim sStartTime As Single
• Dim i As Integer
•
• sStartTime = Timer()
• For i = 1 To 100
• Debug.WriteLine("Hello")
• Next i

MsgBox("Time Taken = " & Timer() - sStartTime & " Seconds")

VB .NET/VB 6 Differences

While the Timer property returns a Double in VB .NET, the VB 6 Timer function returns a Single.

See Also

GetTimer Function

TimeSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
TimeSerial(hour, minute, second)
hour

Use: Required

 585

Data Type: Integer

A number in the range 0 to 23

minute

Use: Required

Data Type: Integer

Any valid integer

second

Use: Required

Data Type: Integer

Any valid integer

Return Value

A Date representing the time specified by the arguments to the function

Description

Constructs a valid time given a number of hours, minutes, and seconds

Rules at a Glance

• Any of the arguments can be specified as relative values or expressions.
• The hour argument requires a 24-hour clock format; however, the returned time is determined

by the system's regional settings.
• If any value is greater than the normal range for the time unit to which it relates, the next

higher time unit is increased accordingly. For example, a second argument of 125 will be
evaluated as 2 minutes, 5 seconds.

• If any value is less than zero, the next higher time unit is decreased accordingly. For example,
TimeSerial(2,-1,30) returns 01:59:30.

Programming Tips and Gotchas

Because TimeSerial handles time units outside of their normal limits, it can be used for time
calculations. However, because the DateAdd function is more flexible and is internationally aware, it
should be used instead for this purpose.

See Also

TimeOfDay Property, TimeString Property, TimeValue Function

TimeString Property

 586

Class

Microsoft.VisualBasic.DateAndTime

Syntax
TimeString()

Return Value

String representing the current system time

Description

Returns or sets the current system time

Rules at a Glance

• The TimeString property returns the time in the format determined by the system's regional
settings.

• You can use any time format recognized by IsDate when setting the time using the TimeString
property.

Programming Tips and Gotchas

• The string returned by the TimeString property also includes an invalid date, 01/01/0001. It
can be eliminated with the Format or FormatDateTime function as follows:

• Format(TimeOfDay(), "Long Time")
FormatDateTime(TimeOfDay(), DateFormat.LongTime)

• To get or set the current system date as a String, use the DateString property.
• To access the current system time as a Date, use the TimeOfDay property.

VB .NET/VB 6 Differences

The TimeString property is new to VB .NET.

See Also

TimeOfDay Property, TimeSerial Function, TimeValue Function

TimeValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
TimeValue(stringtime)

 587

stringtime

Use: Required

Data Type: String

Any valid string representation of a time

Return Value

A Date containing the time specified by the string argument, with the date set to January 1 of the year
1

Description

Converts a string representation of a time to a Date data type

Rules at a Glance

• If stringtime is invalid, a runtime error is generated.
• If stringtime is Nothing, TimeValue generates an error.
• stringtime can be in any time format recognized by the IsDate function. Both 12- and 24-

hour clock formats are valid.
• The Date value returned by time is formatted based on the system's regional settings.

Programming Tips and Gotchas

• A time literal can also be assigned to a Date variable by surrounding the date with hash
characters (#), as the following snippet demonstrates:

• Dim dMyTime As Date
dMyTime = #12:30:00 AM#

• The CDate function can also cast a time expression contained within a string as a Date
variable, with the additional advantage of being internationally aware.

• The string returned by the TimeString property also includes an invalid date, 01/01/0001. It
can be eliminated with the Format or FormatDateTime function as follows:

• Format(TimeOfDay(), "Long Time")
FormatDateTime(TimeOfDay(), DateFormat.LongTime)

VB/NET/VB 6 Differences

In VB 6, TimeValue returns the time only. In VB .NET, the function also returns an invalid date,
01/01/0001, along with the time.

See Also

TimeOfDay Property, TimeSerial Function, TimeString Property

Today Property

 588

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Today()

Description

Sets or retrieves the current system date

Rules at a Glance

• If you are setting the system date with numbers, as opposed to spelling the month, the
sequence of Day, Month, and Year must be in the same sequence as the computer's regional
settings.

• If you are running Microsoft Windows 95, 98, or 2000, the earliest system date you can set is
January 1, 1980; the latest system date you can set is December 31, 2099.

• The date is returned in the short date format defined by the system's regional settings.

Example
Today() = "January 1, 1998"

Programming Tips and Gotchas

• It is good programming practice to synchronize the dates across the machines in a multiuser
environment, most commonly from the date on a server. This can be done at the operating-
system level within the logon script or at application level using the Today property and
TimeOfDay function.

• It is risky to take a date format for granted. Wherever possible, use the Format function to
explicitly set the date format that you require, prior to using a date value.

• Modern Windows systems are more reliant on system date than ever before. A single machine
can have literally hundreds of different applications installed, many of which will use dates in
one way or another. You should respect the machine on which your application is running, and
only in exceptional circumstances should you change the system date programmatically.

See Also

Now Property

Trim Function

Class

Microsoft.VisualBasic.Strings

Syntax
Trim(str)
str

 589

Use: Required

Data Type: String

Any string expression

Return Value

String

Description

Removes both leading and trailing spaces from a given string

Rules at a Glance

If string is Nothing, the Trim function returns Nothing.

Programming Tips and Gotchas

Trim is equivalent to calling both the RTrim and LTrim functions.

VB .NET/VB 6 Differences

In VB 6, the function's single named argument is string. In VB .NET, its single named argument is
str.

See Also

LTrim Function, RTrim Function

Try...Catch...Finally Statement

Syntax
Try
 tryStatements

[Catch1 [exception [As type]] [When expression]
 catchStatements1
[Exit Try]

Catch2 [exception [As type]] [When expression]
 catchStatements2
[Exit Try]
. . .
Catchn [exception [As type]] [When expression]
 catchStatementsn]
[Exit Try]

[Finally

 590

 finallyStatements]
End Try

Description

Used to handle runtime errors.

Rules at a Glance

• The tryStatements, which are required, constitute the Try block and are the statements
that VB monitors for errors.

• The Catchblocks, of which there can be more than one, contain code that is executed in
response to VB "catching" a particular type of error within the Try block. Thus, the Catch
blocks consist of the error-handlers for the Try block.

• The phrases exception [As type] and [When expression] are referred to as filters in
the VB .NET documentation. In the former case, exception is either a variable of type
Exception, which is the base class that "catches" all exceptions, or a variable of one of
Exception's derived classes. The When filter is typically used with user-defined errors. (See
the upcoming example.)

• The Exit Try statement is used to break out of any portion of a Try...Catch...Finally
block.

• The optional finallyStatements code block is executed regardless of whether an error
occurs (or is caught), unless an Exit Try statement is executed.

Example

The code in the following Try block will raise an error if the user does not enter a number. The Catch
block will catch this error.

Try
 Dim sInput As String
 sInput = Inputbox("Enter a number.")
 If Not IsNumeric(sInput) Then
 Err().Raise(1)
 End If
Catch When Err.Number = 1
 Msgbox("Error1")
End Try

Programming Tips and Gotchas

As with unstructured error handling, VB may pass an error up the call stack when using structured
error handling. This happens in the following situations:

• If an error occurs within a Try block that is not handled by an existing Catch block.
• If an error occurs outside any Try block (provided, of course, that no On Error-style error

handlers are active).

VB .NET/VB 6 Differences

Structured exception handling using the Try...Catch...Finally construct is new to VB .NET. It
replaces unstructured error handling using the On Error statement, which continues to be supported
in VB .NET.

 591

TypeName Function

Class

Microsoft.VisualBasic.Information

Syntax
TypeName(varname)
varname

Use: Required

Type: String literal

Name of a variable

Return Value

String

Description

Returns a string giving data type information about varname. The possible return values are:

String returned Variable contents
Boolean 8-bit True or False value type
Byte 8-bit binary value type
Char 16-bit character value type
Date 64-bit date and time value type
DBNull Reference type indicating missing or nonexistent data
Decimal 96-bit fixed point numeric value type
Double 64-bit floating point numeric value type
Error Error object
Integer 32-bit integer value type
Long 64-bit integer value type

Nothing Object variable with no object currently assigned to it, uninitialized string, or
undimensioned array

Object Reference type pointing to an unspecialized object
Short 16-bit integer value type
Single 32-bit floating point numeric value type
String Reference type pointing to a string of 16-bit characters
<objectclass> Reference type pointing to a specialized object created from class <objectclass>
<structure> A variable created from a structure or user-defined type named structure
<typename>() Dimensioned array

Rules at a Glance

 592

• If varname is declared as type Object, it returns the data subtype that has been assigned to it.
• varname returns the data type name of all value types. It returns Nothing for uninitialized

reference types and the data type name for all initialized reference types.
• If varname is an array that has been initialized or dimensioned, the returned string will be the

entry in the previous table corresponding to the underlying data type of the array, but with
empty parentheses appended to the end of the name. For example, if varname points to an
array of integers, TypeName returns Integer().

• When TypeName returns the name of a reference type, such as a class, it only returns the
simple name, not the qualified name. For example, if varname points to an object of class
System.Drawing.Printing.PaperSource, TypeName returns PaperSource.

• If varname is of type Object, TypeName returns the data subtype stored to that object.

Example
Dim obj As Object
obj = New CEmployee()
MsgBox(TypeName(obj)) ' Displays: CEmployee
obj = 100
MsgBox(TypeName(obj)) ' Displays: Integer
obj = Nothing
MsgBox(TypeName(obj)) ' Displays: Nothing

Programming Tips and Gotchas

The TypeName function also works directly with members of the Foundation Class Library that aren't
wrapped by Visual Basic. It reports the following data types:

String returned Variable contents
UINT16 Unsigned 16-bit integer
UINT32 Unsigned 32-bit integer
UINT64 Unsigned 64-bit integer
SBYTE Signed byte

VB .NET/VB 6 Differences

• In VB 6, the call to the TypeName function in the code fragment:
• Dim strVar As String

Debug.WriteLine(TypeName(strVar))

returns a String. In VB .NET, the TypeName function in an equivalent code fragment returns
Nothing. This is because in VB .NET, strings are reference types and reference types are
implemented as objects.

• In VB 6, passing a user-defined type to the TypeName function generates a compile error. In
VB .NET, it returns the name of the user-defined type or structure.

• In VB 6, passing an uninitialized array to the TypeName function returns the type name plus
parentheses. In VB .NET, it returns Nothing.

• In VB 6, a variable whose type is not declared is reported as a Variant; in VB .NET, it is an
object.

See Also

VarType Function

 593

UBound Function

Class

Microsoft.VisualBasic.Information

Syntax
UBound(array[, rank])
array

Use: Required

Data Type: Any

The name of the array

rank

Use: Optional

Data Type: Integer

A number specifying the dimension of the array

Return Value

Integer

Description

Indicates the upper limit of a specified coordinate of an array. The upper boundary is the largest
subscript you can use with that coordinate.

Rules at a Glance

• To determine the upper limit of the first coordinate of an array, set rank to 1, set it to 2 for the
second coordinate, and so on.

• If rank is not specified, 1 is assumed.

Programming Tips and Gotchas

• Note that UBound returns the actual subscript of the upper bound of a particular array
dimension.

• The number of valid indices for the ith coordinate is equal to UBound(array, i) + 1.
• If array is an uninitialized array, passing it to the UBound function generates an

ArgumentNullException exception. To prevent this, you can declare the array as follows:

Dim arrValues(-1) As String

 594

UCase Function

Class

Microsoft.VisualBasic.Strings

Syntax
UCase(value)
value

Use: Required

Data Type: String

A valid string expression

Return Value

String

Description

Converts a string to uppercase

Rules at a Glance

• UCase only affects lowercase alphabetical letters; all other characters within value remain
unaffected.

• UCase returns Nothing if value is Nothing.

See Also

LCase Function, StrConv Function

Unlock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
Unlock(filenumber[, record)

Unlock(filenumber[, fromrecord[, torecord]])
filenumber

 595

Use: Required

Data Type: Integer

Any valid file number

record

Use: Required

Data Type: Long

The record or byte number at which to commence the lock

fromrecord

Use: Required

Data Type: Long

The first record or byte number to lock

torecord

Use: Required

Data Type: Long

The last record or byte number to lock

Description

Use the Unlock procedure in situations where more than one part of your program may need read and
write access to the same data file. The Unlock procedure removes a lock that the Lock procedure
placed on a section of the file or the whole file.

Rules at a Glance

• Use the Unlock procedure only with the filenumber parameter to unlock the whole file.
• The Unlock procedure unlocks an entire file opened in Input or Output (sequential) mode,

regardless of the record, fromrecord, or torecord arguments.
• Records and bytes in a file are always numbered sequentially from 1 up.
• To unlock a particular record, specify its record number as record, and only that record will

be unlocked.
• To unlock a range of bytes (in a binary file) or of records (in a random file), indicate the

starting position as fromrecord and the ending position as torecord.

Programming Tips and Gotchas

• You must take care to remove all file locks using the Unlock procedure before either closing a
file or ending the application; otherwise, you can leave the file in an unstable state. This
means that, where appropriate, your error-handling routines must be made aware of any locks
you currently have in place so that they may be removed if necessary.

 596

• You use the Lock and Unlock procedures in pairs, and the argument lists of both statements
must match exactly.

VB .NET/VB 6 Differences

• In VB 6, it is possible to omit the fromrecord argument and provide only the torecord
argument, in which case all records (in random mode) or bytes (in binary mode) from the
beginning of the file to torecord would be unlocked. In VB .NET, this syntax is not allowed.

• VB 6 allows you to precede the filenumber argument with the # symbol. In VB .NET, this
syntax is not permitted.

• When specifying starting and ending records in VB 6, you use the To keyword to separate
them. In VB .NET, this syntax is not permitted; instead, you must use a comma to separate
the two arguments.

See Also

Lock Procedure

Val Function

Class

Microsoft.VisualBasic.Conversion

Syntax
Val(expression)
expression

Use: Required

Data Type: String or Char

Any string representation of a number

Return Value

A Double able to hold the number contained in expression

Description

Converts a string representation of a number into a Double

Rules at a Glance

• The Val function starts reading the string with the leftmost character and stops at the first
character that it does not recognize as being part of a valid number. For example, the
statement:

iNumber = Val("1A1")

 597

returns 1.

• &O and &H (the octal and hexadecimal prefixes) are recognized by the Val function.
• Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized as

numbers by the Val function.
• The Val function only recognizes the period (.) as a decimal delimiter.
• Prior to processing expression, Val removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

If you are developing an international application, you should use the more modern, internationally
aware CDbl function to convert strings to numbers, since CDbl can recognize all decimal separators.

ValDec Function

Class

Microsoft.VisualBasic.Conversion

Syntax
ValDec(expression)
expression

Use: Required

Data Type: String or Char

Any string representation of a number

Return Value

A Decimal able to hold the number contained in expression

Description

Converts a string representation of a number into a Decimal

Rules at a Glance

• The ValDec function starts reading the string with the leftmost character and stops at the first
character that it does not recognize as being part of a valid number. For example, the
statement:

iNumber = ValDec("1A1")

returns 1.

• &O and &H (the octal and hexadecimal prefixes) are recognized by the ValDec function.

 598

• Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized as
numbers by the ValDec function.

• The ValDec function only recognizes the period (.) as a decimal delimiter.
• Prior to processing expression, ValDec removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

If you are developing an international application, you should use the CDec function to convert strings
to numbers, since CDec can recognize all decimal separators.

VB .NET/VB 6 Differences

The ValDec function is new to VB .NET.

VarType Function

Class

Microsoft.VisualBasic.Information

Syntax
VarType(varname)
varname

Use: Required

Data Type: Any

The name of a variable

Return Value

A member of the VariantType enumeration indicating the variable type

Description

Determines the data type of a variable

Rules at a Glance

• The possible values returned by the function include the following members of the
VariantType enumeration.

Constant Value Description
Array 8192 Array
Boolean 11 Boolean data type
Byte 17 Byte data type
Char 18 Char data type

 599

Date 7 Date data type
Decimal 14 Decimal data type
Double 5 Double data type
Integer 3 Integer data type
Long 20 Long data type

Object 9 Object, uninitialized string, uninitialized array, object of a specific
type

Short 2 Short data type
Single 4 Single data type
String 8 String
UserDefinedType 36 A structure

• If varname is a dimensioned array, the VarType function returns VariantType.Array
(8192), plus the value of the array's data type. For example, an array of strings returns 8192 +
8 = 8200. You can test for an array with a code fragment such as the following:

If VarType(myVar) And VariantType.Array Then

• You can extract the data type of the array with the following code fragment:

vartype(myVar) and &HFFFFDFFF

• All object variables, whether late-bound or early-bound, return VariantType.Object.
• Data types that are members of the base class library but are not wrapped by VB data types

(i.e., UINT16, UINT32, etc.) return VariantType.UserDefinedType.

VB .NET/VB 6 Differences

• In VB 6, passing a user-defined type as an argument to the VarType function generated an
error. VB .NET allows you to pass a structure as an argument to the function.

• In VB 6, the Vartype function indicates that the data type of an object is the data type of its
default property. In VB .NET, all objects, including objects (like Collection objects) that have
default properties, return VariantType.Object.

See Also

TypeName Function

VbTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax
VbTypeName(urtname)
urtname

 600

Use: Required

Data Type: String

The name of a CTS datatype

Return Value

A String containing the name of a VB .NET datatype

Description

Returns the name of the VB .NET datatype that corresponds to a particular Common Type System
(CTS) datatype

Rules at a Glance

• urtname must be the name of a valid CTS datatype, such as Int32, UInt32, String, or
DateTime.

• If urtname is not a valid CTS datatype, the function returns Nothing.
• If urtname is a valid CTS datatype that does not directly correspond to a VB .NET datatype,

the function returns Nothing.

Example
Public Sub Main

' Displays Short
Dim intNum As Int16 = 1234
Console.WriteLine(VbTypeName(intNum.GetType().ToString))

' Displays ""
Dim uintNum As UInt16 = Convert.ToUInt16(1234)
Console.WriteLine(VbTypeName(uintNum.GetType().ToString))

' Displays Char
Dim chLetter As System.Char = Convert.ToChar("a")
Console.WriteLine(VbTypeName(chLetter.GetType().ToString))

' Displays ""
Dim sbytNum As SByte = Convert.ToSByte(-3)
Console.WriteLine(VbTypeName(sbytNum.GetType().ToString))

End Sub

Programming Tips and Gotchas

• To determine the VB .NET datatype of a particular variable, call the variable's GetType
method to retrieve a Type object, then call the Type object's ToString method to retrieve its
datatype name. This string can then be passed to the VbTypeName function. For example:

strType = VbTypeName(myVar.GetType().ToString)

• If passed the name of a structure defined with the Structure construct or an instance of a
class defined with the Class construct, the VbTypeName function returns Nothing.

 601

• The existence of the VbTypeName function clearly indicates that VB .NET datatypes are
wrappers for some CTS datatypes.

VB .NET/VB 6 Differences

The VbTypeName function is new to VB .NET.

See Also

SystemTypeName Function, SystemTypeName Function

Weekday Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Weekday(datevalue, [dayofweek])
date

Use: Required

Data Type: Date or valid date expression

Any valid date expression

dayofweek

Use: Optional

Data Type: Constant of FirstDayOfWeek enumeration

A constant indicating the first day of the week

Return Value

Integer

Description

Determines the day of the week of a given date

Rules at a Glance

• The default for dayofweek is FirstDayOfWeek.Sunday.
• To determine the day of the week, think of the day specified by dayofweek as day 1, and the

value returned by the function as indicating the day relative to day 1. Then, for example, if the

 602

return value of WeekDay is 2, this specifies the day following dayofweek. A return value of 1
specifies dayofweek. A return value of 7 specifies the day before dayofweek.

• The members of the FirstDayOfWeek enumeration are:

Constant Value Description
Sunday 1 Sunday
Monday 2 Monday
Tuesday 3 Tuesday
Wednesday 3 Wednesday
Thursday 4 Thursday
Friday 5 Friday
Saturday 6 Saturday
Sunday 7 Sunday

• Passing a value of 0 as the dayofweek argument uses the system's locale settings to
determine the first day of the week.

Example

Since the code:

Weekday(#3/26/2001#, FirstDayOfWeek.Sunday)

returns 2, the date 3/26/2001 is a Monday.

Programming Tips and Gotchas

• If passing a date literal as datevalue, the Weekday function requires that all four digits of the
year be present.

• That the function's return value is relative to dayofweek makes it confusing to use the
members of the FirstDayOfWeek enumeration to interpret the function's return value, to say
the least. For example, the following expression evaluates to True if the day of the week is
Tuesday:

• If FirstDayOfWeek.Monday = WeekDay(CDate("10/1/96"), _
 FirstDayOfWeek.Monday) Then

VB .NET/VB 6 Differences

The names of the named parameters of the function have changed from date and firstdayofweek
in VB 6 to datevalue and dayofweek in VB .NET.

See Also

DatePart Function, Day Function, WeekdayName Function

WeekdayName Function

Class

 603

Microsoft.VisualBasic.DateAndTime

Syntax
WeekdayName(Weekday, [abbreviate [, FirstDayOfWeekValue]])
Weekday

Use: Required

Data Type: Long

The ordinal number of the required weekday, from 1 to 7

abbreviate

Use: Optional

Data Type: Boolean

Specifies whether to return the full day name or an abbreviation

FirstDayOfWeekValue

Use: Optional

Data Type: FirstDayOfWeek constant

Member of the FirstDayOfWeek enum indicating the first day of the week

Return Value

A String

Description

Returns the name of the day

Rules at a Glance

• Weekday must be a number between 1 and 7, or the function generates an
ArgumentException error.

• The default value of abbreviate is False.
• For a list of the members of the FirstDayOfWeek enumeration, see the "Weekday Function"

entry.
• The default value of FirstDayOfWeekValue is FirstDayOfWeek.Monday.

Programming Tips and Gotchas

• Since Weekday is an integer, to determine the name of the day of a particular date, combine
WeekDayName with a call to the WeekDay function, as the following code fragment shows:

• sDay = WeekDayName(Weekday(dDate, iFirstDay), _
 bFullName, iFirstDay)

 604

Note that the value of the FirstDayOfWeek argument must be the same in the calls to both
functions for WeekdayName to return an accurate result.

• Unlike the Weekday function, the WeekdayName function behaves predictably. For example,
if you ask for the name of the first day of the week when the week starts on Monday, the
function returns Mon or Monday. If you ask for the fifth day of the week for a week that starts
on Sunday, the function returns Thu or Thursday.

See Also

Weekday Function

While...End While Statement

Syntax
While condition
 [statements]
End While
condition

Use: Required

Data Type: Numeric or String

An expression evaluating to True or False

statements

Use: Optional

Program statements to execute while condition remains True

Description

Repeatedly executes program code while a given condition remains True

Rules at a Glance

• A Null condition is evaluated as False.
• If condition evaluates to True, the program code between the While and End While

statements is executed. After the End While statement is executed, control is passed back
up to the While statement where condition is evaluated again. When condition
evaluates to False, program execution skips to the first statement following the End While
statement.

• You can nest While...End While loops within each other.

Programming Tips and Gotchas

 605

The While...End While statement remains in Visual Basic for backward compatibility only. In our
opinion, it has been superceded by the much more flexible Do...Loop statement.

VB .NET/VB 6 Differences

In VB 6, the ending statement that accompanies the While construct is Wend; in VB .NET, it is End
While.

See Also

Do...Loop Statement

With Statement

Syntax
With object
 [statements]
End With
object

Use: Required

Data Type: Object

A previously declared object variable or user-defined type

statements

Use: Optional

Program code to execute against object

Description

This statement is used to execute a series of statements on an object without having to qualify each
statement with the object name.

Rules at a Glance

• The single object referred to in the With statement remains the same throughout the code
contained within the With...End With block. Therefore, only properties and methods of
object can be used within the code block without explicitly referencing the object. All other
object references within the With...End With statement must start with a fully qualified
object reference.

• With statements can be nested, as long as the inner With statement refers to a subobject or
a dependent object of the outer With statement.

• A member of object is referenced within a With block by omitting the object name and
simply including a period and the member name.

 606

Example
Public Structure Point
Dim x As Integer
 Dim y As Integer
End Structure

Public Sub Main

Dim udtPt As POINT
With udtPt
.x = 10
 .y = 100
End With
Console.Writeline(udtpt.x)
End Sub

Programming Tips and Gotchas

It is important that you do not include code within the With statement block that forces execution to
branch out of the block. Similarly, do not write code that forces program flow to jump into a With block.
Both the With and its associated End With statement must be executed, or you will generate
unpredictable results.

WithEvents Keyword

Syntax
Dim|Private|Public WithEvents objVarName As objectType
objVarName

Use: Required

Data Type: String

The name of any object variable that refers to an object that exposes events

objectType

Use: Required

Data Type: Any object type other than the generic Object

The ProgID of a referenced object

Description

The WithEvents keyword informs VB that the object being referenced exposes events for which you
intend to provide event handlers.

When you declare an object variable using WithEvents, an entry for the object variable is placed in
the code window's drop-down Object List, and a list of the events available to the object variable is

 607

placed in the code window's drop-down Procedures List. You can then write code event handlers for
the object variable.

Rules at a Glance

• An object-variable declaration using the WithEvents keyword can only be used in an object
or class module.

• An object-variable declaration using the WithEvents keyword should only be placed in the
Declarations section of the object module.

• Any ActiveX object or class module that exposes events can be used with the WithEvents
keyword. WithEvents is only valid when used to declare an object variable.

• You cannot use WithEvents when declaring a generic Object type.
• Unlike other variable declarations, the As keyword is mandatory.
• There is no limit to the number of object variables that can refer to the same object using the

WithEvents keyword; they will all respond to that object's events.
• You cannot create an array variable that uses the WithEvents keyword.
• You cannot use the WithEvents keyword in a local variable declaration.
• If objectType does not expose any events, the WithEvents statement generates a

compiler error.

Example

The following example demonstrates how to trap and respond to the events within an ADO recordset.
An object variable is declared using the WithEvents keyword in the declarations section of a form
module. This allows you to write event-handling code for the ADO's built-in events, in this case the
FetchProgress event. (The FetchProgress event allows you to implement a Progress Bar control that
shows progress in populating the recordset.)

Private WithEvents oADo As ADODB.Recordset

Private Sub oADo_FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset) _
 Handles oADO.FetchProgress

 ProgressBar1.Max = MaxProgress
 ProgressBar1.Value = Progress

End Sub

Programming Tips and Gotchas

• Placing the object-variable declaration that uses the WithEvents keyword in a procedure
does not add the object variable name to the module's Object List. In other words, the events
fired from the object would only have scope in the procedure and therefore cannot be handled.

• Even if you declare the object variable using the Public keyword, the events fired by the
object only have scope in the module in which the object variable has been declared.

• Because you cannot use WithEvents to declare a generic Object type, WithEvents can
only be used with early-bound object references. In other words, objects must have been
added to the project using the References dialog box. Without this prior knowledge of the
object's interface, VB has no chance of knowing how to handle events from the object.

• If the object you are referencing doesn't expose any public events, you will generate a
compile-time error, "This object does not raise Events."

VB .NET/VB 6 Differences

 608

In VB 6, object variables in a code module could not be declared with WithEvents. In VB .NET, this
restriction has been lifted.

See Also

Dim Statement, Public Statement

Write Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax
Write(filenumber, output)
filenumber

Use: Required

Data Type: Integer

Any valid file number

output

Use: Required

Data Type: Object (Any)

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file

Rules at a Glance

• output can contain multiple expressions delimited with either a comma, a semicolon, or a
space.

• output can also be an Object array containing values to be written to the file indicated by
filenumber.

• The following table describes how the Write procedure handles certain types of data,
regardless of the locale, to allow files to be read universally:

Data type Data written to file

 609

Numeric Decimal separator is always a period (.)
Boolean #TRUE# or #FALSE#

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)
Null #NULL#

Error #ERROR errorcode#

• The Write procedure automatically does the following:
o Delimits data fields with a comma
o Places quotation marks around string data

Programming Tips and Gotchas

The structured data written to a file using the Write procedure is most suited to being read back from
the file using the Input procedure.

VB .NET/VB 6 Differences

• The VB 6 Write statement requires that output be a comma-delimited list of literal values or
variables. The VB .NET WriteLine procedure also allows outputlist to be a parameter
array.

• Calling the VB 6 Write statement with a single comma in place of outputlist forces a
blank line to be written to the file. VB .NET requires that you call the WriteLine procedure.

• The VB 6 Write statement allowed a # symbol to precede the filenumber argument. In the
VB .NET Write procedure, this usage is not permitted.

See Also

WriteLine Procedure

WriteLine Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax
WriteLine(filenumber, [output])
filenumber

Use: Required

Data Type: Integer

Any valid file number

 610

output

Use: Optional

Data Type: Object (Any)

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file and then adds a line-feed character combination

Rules at a Glance

• output can contain multiple expressions delimited with either a comma, a semicolon, or a
space.

• output can also be an Object array containing values to be written to the file indicated by
filenumber.

• The following table describes how the WriteLine procedure handles certain types of data,
regardless of the locale, to allow files to be read universally:

Data type Data written to file
Numeric Decimal separator is always a period (.)
Boolean #TRUE# or #FALSE#

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)
Null #NULL#

Error #ERROR errorcode#

• The WriteLine procedure automatically does the following:
o Delimits data fields with a comma
o Places quotation marks around string data
o Inserts a new-line character (Chr(13) + Chr(10)) after the last item in output is

written to the file

• If the output argument is omitted, WriteLine writes a blank line to the file designated by
filenumber.

Programming Tips and Gotchas

The structured data written to a file using the WriteLine procedure is most suited to being read back
from the file using the Input procedure.

VB .NET/VB 6 Differences

The WriteLine procedure is new to VB .NET as a partial replacement for the VB 6 Write procedure.

See Also

Write Procedure

Year Function

 611

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Year(datevalue)
datevalue

Use: Required

Data Type: Date or valid date expression

Any valid date expression

Return Value

Integer

Description

Returns an integer representing the year in a given date expression

Rules at a Glance

• If datevalue contains Nothing, Year returns 1. (This assumes that Option Strict is off.)
For example:

• Dim oDat As Object
Console.Writeline(Year(sDat)) ' Displays 1

• If datevalue is a date literal (a date delimited with the # symbol), the year must contain four
digits.

Programming Tips and Gotchas

• The validity of the date expression—and the position of the year element within the given date
expression—is initially determined by the locale settings of the Windows system. However,
some extra intelligence relating to two-digit year values (see the next item in this list) has been
built into the Year function, which surpasses the usual comparison of a date expression to the
current locale settings.

• What happens when you pass a date over to the Year function containing a two-digit year?
Quite simply, when the Year function sees a two-digit year, it assumes that all values equal to
or greater than 30 are in the 20th century (i.e., 30 = 1930, 98 = 1998) and that all values less
than 30 are in the 21st century (i.e., 29 = 2029, 5 = 2005). Of course, it is much better
programming practice to use—and require your clients to use—four-digit years.

See Also

DatePart Function

 612

 613

Part III: Appendixes

Part III contains six appendixes that supplement the core reference material provided in Part II.
These include:

• Appendix A, which surveys the extensive changes the language has undergone with
the release of the .NET platform.

• Appendix B, which lists each language element from Part II in several different
categories. You can use it to identify a particular language element so that you can
then look up its detailed entry in Part II.

• Appendix C, which lists VB .NET operators, including a somewhat more detailed
treatment of logical and bitwise operators.

• Appendix D, which lists VB .NET intrinsic constants, as well as VB .NET
enumerations and their members.

• Appendix E, which documents the operation of the Visual Basic command-line
compiler.

• Appendix F, which lists the elements that have dropped out of the Visual Basic
language as a result of its transition to the .NET Framework.

 614

 615

Appendix A. What's New and Different in VB .NET

This appendix is for readers who are familiar with earlier versions of Visual Basic, specifically Version
6. In this appendix, we describe the basic changes to the VB language, both in syntax and in
functionality. (Readers familiar only with Version 5 of Visual Basic will also benefit from this chapter,
although we discuss only the changes since Version 6.)

We also touch upon other changes to VB, such as error handling and additional object-oriented
programming support.

A.1 Language Changes for VB .NET

In this section, we outline the changes made to the Visual Basic language from Version 6 to Visual
Basic .NET. These language changes were made to bring VB under the umbrella of the .NET
Framework and allow a Common Language Runtime for all languages in Visual Studio .NET. In some
sense, the changes made to the VB language were to bring the language component of VB (as
opposed to the IDE component) more in line with the C# language (which is a derivative of C and C++).

Since we assume in this chapter that you are familiar with VB 6, we will not necessarily discuss how
VB 6 handles a given language feature, unless the contrast is specifically helpful. You can assume
that if a VB .NET language feature is described in this chapter, there has been a change in its
behavior since VB 6.

A.1.1 Data Types

There have been fundamental changes to data types in VB .NET, which we outline in this section. The
most important change is that all of the languages under the .NET umbrella (VB, C#, and Managed
C++) now implement a subset of a common set of data types, defined in the .NET Framework's Base
Class Library (BCL). We say subset because VB .NET does not implement all of these data types. In
any case, each data type in the BCL is implemented either as a class or as a structure (which is
similar to a class) and, as such, has members. The VB .NET data types are wrappers for the
corresponding BCL data type. While this need not concern the VB programmer, it can be used in
some cases to expose a bit more functionality from a data type. For more on data types, see Chapter
2.

Now let us consider the specifics.

A.1.1.1 Strings

As you may know, in VB 6, strings were implemented as a data type known as the BSTR. A BSTR is a
pointer to a character array that is preceded by a 4-byte Long specifying the length of the array. In
VB .NET, strings are implemented as objects of the String class, which is part of the .NET
Framework's System namespace.

One consequence of this reimplementation of strings is that VB .NET does not have fixed-length
strings, as does VB 6. Thus, the following code is illegal:

Dim Name As String * 30

Note, though, that strings in VB .NET are immutable. That is, although you do not have to declare a
string's length in advance, once a value is assigned to a string, its length cannot change. If you
change that string, the .NET Common Language Runtime actually gives you a reference to a new
String object. (For more on this, see Chapter 2.)

A.1.1.2 Integer/Long data type changes

 616

VB .NET defines the following signed-integer data types:

Short

The 16-bit integer data type. It is the same as the Int16 data type in the Base Class Library.

Integer

The 32-bit integer data type. It is the same as the Int32 data type in the Base Class Library.

Long

The 64-bit integer data type. It is the same as the Int64 data type in the Base Class Library.

Thus, with respect to the changes from VB 6 to VB .NET, we can say:

• The VB 6 Integer data type has become the VB .NET Short data type.
• The VB 6 Long data type has become the VB .NET Integer data type.

A.1.1.3 Variant data type

VB .NET does not support the Variant data type. The Object data type is VB .NET's universal data
type, meaning that it can hold data of any other data type. According to the documentation, all of the
functionality of the Variant data type is supplied by the Object data type.

We cannot resist the temptation to add that there are several penalties associated with using a
universal data type, including poor performance and poor program readability. Thus, while VB .NET
still provides this opportunity through the Object data type, its use is not recommended whenever it
can be avoided.

The VarType function, which was used in VB 6 to determine the type of data stored in a variant
variable (that is, the variant's data subtype), now reports the data subtype of the Object type instead.
In addition, the TypeName function, which can be used to return a string that indicates the data type of
a variable of type Object, is still supported.

A.1.1.4 Other data type changes

Here are some additional changes in data types:

• The Deftype statements (DefBool, DefByte, etc.), which were used to define the default
data type for variables whose names began with particular letters of the alphabet, are not
supported in VB .NET.

• The Currency data type is not supported in VB .NET. However, in VB .NET, the Decimal data
type can handle more digits on both sides of the decimal point, and so it's a superior
replacement. In VB .NET, Decimal is a strong data type; in VB 6, it was a Variant subtype, and
a variable could be cast as a Decimal only by calling the CDec conversion function.

• In VB 6, a date is stored in a Double format using four bytes. In VB .NET, the Date data type is
an 8-byte integer data type whose range of values is from January 1, 1 to December 31, 9999.

A.1.2 Variables and Their Declaration

The changes in variable declarations and related issues are described here.

A.1.2.1 Variable declaration

 617

The syntax used to declare variables has changed for VB .NET, making it more flexible. Indeed, these
are long awaited changes.

In VB .NET, when multiple variables are declared on the same line, if a variable is not declared with a
type explicitly, then its type is that of the next variable with an explicit type declaration. Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type Variant,
and only the variable k would have type Integer.)

When declaring external procedures using the Declare statement, VB .NET does not support the
AsAny type declaration. All parameters must have a specific type declaration.

A.1.2.2 Variable initialization

VB .NET permits the initialization of variables in the same line as their declaration (at long last). Thus,
we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize its value to 5. Similarly, we can declare and initialize more
than one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

A.1.2.3 Variable scope changes

In VB 6, a variable that is declared anywhere in a procedure has procedure scope; that is, the variable
is visible to all code in the procedure.

In VB .NET, if a variable is defined inside a code block (a set of statements that is terminated by an
End..., Loop, or Next statement), then the variable has block-level scope; that is, it is visible only
within that block.

For example, consider the following VB .NET code:

Sub Test()
 If x <> 0 Then
 Dim rec As Integer
 rec = 1/x
 End If

 MsgBox CStr(rec)
End Sub

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement will produce an error.

It is important to note that the lifetime of a local variable is always that of the entire procedure, even if
the variable's scope is block-level. This implies that if a block is entered more than once, a block-level
variable will retain its value from the previous time the code block was executed.

A.1.2.4 Arrays and array declarations

 618

VB 6 permitted you to define the lower bound of a specific array, as well as the default lower bound of
arrays whose lower bound was not explicitly specified. In VB .NET, the lower bound of every array
dimension is 0 and cannot be changed. The following examples show how to declare a one-
dimensional array, with or without an explicit size and with or without initialization:

' Implicit constructor: No initial size and no initialization
Dim Days() As Integer

' Explicit constructor: No initial size and no initialization
Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization
Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization
Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization
Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

' Explicit constructor, Initial size and initialization
Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array has size X+1.

Multidimensional arrays are declared similarly. For instance, the following example declares and
initializes a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))
Debug.Write(X(0, 1))
Debug.Writeline(X(0, 2))
Debug.Write(X(1, 0))
Debug.Write(X(1, 1))
Debug.Write(X(1, 2))

123
456

In VB .NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the ReDim
statement. Note, however, that the number of dimensions of an array cannot be changed.

Moreover, unlike VB 6, the ReDim statement cannot be used for array declaration, but only for array
resizing. All arrays must be declared initially using a Dim (or equivalent) statement.

A.1.2.5 Structure/user-defined type declarations

In VB 6, a structure or user-defined type is declared using the Type...EndType structure.

 619

In VB .NET, the Type statement is not supported. Structures are declared using the
Structure...EndStructure construct. Also, each member of the structure must be assigned an
access modifier, which can be Public, Protected, Friend, Protected Friend, or Private.
(The Dim keyword is equivalent to Public in this context.)

For instance, the VB 6 user-defined type:

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

is defined in VB .NET as:

Structure RECT
 Public Left As Long
 Public Top As Long
 Public Right As Long
 Public Bottom As Long
End Structure

Actually, the VB .NET Structure type is far more reaching than its VB 6 user-defined type
predecessor. Indeed, structures have many properties in common with classes; for instance,
structures can have members (properties and methods). We discuss structures in detail in Chapter 2.

A.1.3 Boolean and Bitwise Operators

Eqv and Imp, two infrequently used Boolean and bitwise operators that are present in VB6, have been
removed from VB .NET.

In VB6, Eqv is the logical equivalence operator. As a Boolean operator, it returns True if both
expressions are either True or False, but it returns False if one is True while the other is False.
As a bitwise operator, it returns 1 if both bits are the same (that is, if both are 1 or both are 0), but it
returns 0 if they are different. In VB .NET, Eqv can be replaced with the equals comparison operator
for logical operations. However, for bitwise operations, you'll have to resort to a bit-by-bit comparison,
as the following code fragment shows:

Public Function BitwiseEqv(x1 As Byte, X2 As Byte) _
 As Long

Dim b1, b2, bRet As Byte
Dim iCtr as Integer

For iCtr = 0 to len(x1) * 8 - 1
 b1 = x1 and 2^iCtr
 b2 = x2 and 2^iCtr
 if b1 = b2 then bRet += 2^iCtr
next

BitwiseEqv = bRet

End Function

In VB6, Imp is the logical implication operator. As a Boolean operator, it returns True unless its first
expression is True while the second is False. As a bitwise operator, it returns 1 unless the bit in the

 620

first expression is 1 while the bit in the second expression is 0. In VB .NET, Imp can be replaced with
a combination of the Not and Or operators for logical operations. For example, the code fragment:

bResult = (Not bFlag1) Or bFlag2

is equivalent to the VB6 statement:

bResult = bFlag1 Imp bFlag2

For bitwise operations, a bit-by-bit comparison is again necessary, as the following code fragment
shows:

Public Function BitwiseImp(x1 As Byte, X2 As Byte) As Long

Dim b1, b2, bRet As Byte
Dim iCtr as Integer

For iCtr = 0 to len(x1)*8 - 1
 b1 = Not(x1) and 2^iCtr
 b2 = x2 and 2^iCtr
 if b1 Or b2 then
 bRet += 2^iCtr
 end If
next

BitwiseImp = bRet

End Function

A.1.4 Changes Related to Procedures

VB .NET features a number of changes to the way in which procedures are defined and called, most
of which tend to make the language more streamlined and consistent.

A.1.4.1 Calling a procedure

In VB 6, parentheses are required around arguments when making function calls. When calling a
subroutine, parentheses are required when using the Call statement and proscribed when not using
the Call statement.

In VB .NET, parentheses are always required around a nonempty argument list in any procedure
call—function or subroutine. (In subroutine calls, the Call statement is optional.) When calling a
parameterless procedure, empty parentheses are optional.

A.1.4.2 Default Method of Passing Arguments

In VB 6, if the parameters to a function or subroutine were not explicitly prefaced with the ByVal or
ByRef keywords, arguments were passed to that routine by reference, and modifications made to the
argument in the function or subroutine were reflected in the variable's value once control returned to
the calling routine. In VB .NET, on the other hand, if the ByRef or ByVal keyword is not used in a
parameter, the argument is passed to the routine by value, and modifications made to the argument in
the function or subroutine are discarded once control returns to the calling program.

A.1.4.3 Optional arguments

 621

In VB 6, a procedure parameter can be declared as Optional without specifying a default value. For
optional Variant parameters, the IsMissing function can be used to determine whether the parameter is
present.

In VB .NET, an optional parameter must declare a default value, which is passed to the procedure if
the calling program does not supply an argument for that parameter. The IsMissing function is not
supported. The following example shows an optional parameter declaration:

Sub Calculate(Optional ByVal Switch As Boolean = False)

A.1.4.4 Return statement

In VB .NET, the Return statement is used to return control to the calling program from a function or
subroutine. The GoSub statement is not supported. Note that the Return statement is used to return
a value from a function.

The following function illustrates the Return statement:

Public Function Test() As Integer
 If MsgBox("Return", MsgBoxStyle.YesNo) = MsgBoxResult.Yes Then
 Return 0
 Else
 MsgBox("Continue")
 Return 1
 End If
End Function

A.1.4.5 Passing property parameters in procedures

Consider passing a property to a procedure by reference, as in:

Sub ShrinkByHalf(ByRef lSize As Long)
 lSize = CLng(lSize/2)
End Sub

Call ShrinkByHalf(Text1.Height)

In VB 6, when passing the value of a property by reference, the property is not updated. In other
words, passing a property by reference is equivalent to passing it by value. Hence, in the previous
example, the property Text1.Height will not be changed.

In VB .NET, passing a property by reference does update the property, so in this case, the
Text1.Height property will be changed. Note, however, that the value of the property is not changed
immediately, but rather when the called procedure returns.

A.1.4.6 ParamArray parameters

In VB 6, if the ParamArray keyword is used on the last parameter of a procedure declaration, the
parameter can accept an array of Variant parameters. In addition, ParamAarray parameters are
always passed by reference.

In VB .NET, ParamArray parameters are always passed by value, and the parameters in the array
may be of any data type.

A.1.5 Miscellaneous Language Changes

 622

VB .NET includes several miscellaneous changes that include the format of line numbers, the lack of
support for the GoTo and GoSub statements, and the replacement of the Wend keyword by End While.

A.1.5.1 Line numbers

Visual Basic .NET requires that every line number be followed immediately by a colon (:). A statement
can optionally follow the colon. In VB 6, line labels, which were used in particular for error handling by
the On Error GoTo statement, had to be followed immediately by a colon, but line numbers did not.

A.1.5.2 On GoTo

The On...GoSub and On...GoTo constructions are not supported. However, VB .NET still supports the
On Error GoTo statement.

A.1.5.3 While

The While...Wend construction loops through code while a specified condition is True. VB .NET
retains that construction, but replaces the Wend keyword with the End While statement. The Wend
keyword is not supported.

A.1.5.4 GoSub and Return statements

In VB .NET, the GoSub statement is not supported.

As remarked earlier, in VB .NET, the Return statement is used to return control to the calling program
from a function or subroutine. The VB 6 Exit Sub and Exit Function statements continue to be
supported in VB .NET; however, the advantage of the Return statement is that it allows you to
specify the function's return value as an argument to the Return statement.

A.2 Changes to Programming Elements

VB .NET has removed support for several programming elements because the underlying .NET
Framework class library and the Common Language Runtime (CLR) contain equivalent functionality.
Here are the victims and their replacements. (We discuss the class library and CLR in Chapter 4 and
Chapter 5.)

A.2.1 Constants

The Microsoft.VisualBasic.Constants class in the Base Class Library defines a number of constants,
such as the familiar vbCrLf constant, so these can be used as always. However, some constants,
such as the color constants vbRed and vbBlue, are no longer directly supported. Indeed, the color
constants are part of the System.Drawing namespace's Color structure, so they are accessed as
follows:

Me.BackColor = System.Drawing.Color.BlanchedAlmond

In most cases, to access a particular constant that is not a field in the Microsoft.VisualBasic.Constants
class, you must designate the enumeration (or structure) to which it belongs, along with the constant
name. For example, the vbYes constant in VB 6 continues to exist as an intrinsic constant in VB .NET.
However, it has a counterpart in the MsgBoxResult enumeration, which can be accessed as follows:

If MsgBoxResult.Yes = MsgBox("OK to proceed?", ...

 623

For a list of all built-in constants and enums, see Appendix D.

A.2.2 String Functions

The LSet and RSet functions have been replaced by the PadLeft and PadRight methods of the
System.String class. For instance, the following code pads the name "Donna" with spaces on the left
to make the total string length equal to 15:

Dim sName As String = "Donna"
Msgbox(sName.PadLeft(15))

The String function has been removed from the language. In its place, we simply declare a string and
initialize it, using syntax such as:

Dim str As New String("A"c, 5)

which will define a string containing five As. Note the use of the modifier c in "A"c to define a
character (data type Char), as opposed to a String of length 1. This is discussed in more detail in
Chapter 2.

A.2.3 Emptiness

In VB 6, the Empty keyword indicates an uninitialized variable, and the Null keyword is used to
indicate that a variable contains no valid data. VB .NET does not support either keyword, but uses the
Nothing keyword in both of these cases.

According to the documentation: "Null is still a reserved word in Visual Basic .NET 7.0, even though
it has no syntactical use. This helps avoid confusion with its former meanings." Whatever.

In addition, the IsEmpty function is not supported in VB .NET.

A.2.4 Graphical Functionality

The System.Drawing namespace contains classes that implement graphical methods. For instance,
the Graphics class contains methods such as DrawEllipse and DrawLine. As a result, the VB 6 Circle
and Line methods have been dropped.

Note that the VB 6 PSet and Scale methods are no longer supported and that there are no direct
equivalents in the System.Drawing namespace.

A.2.5 Mathematical Functionality

Mathematical functions are implemented as members of the Math class of the System namespace.
Thus, the VB 6 math functions, such as the trigonometric functions, have been dropped. Instead, we
can use statements such as:

Math.Cos(1)

Note also that the Round function has been replaced by Round method of the System.Math class.

A.2.6 Diagnostics

The System.Diagonstics namespace provides classes related to programming diagnostics. Most
notably, the VB 6 Debug object is gone, but its functionality is implemented in the

 624

System.Diagnostics.Debug class, which has methods such as Write, WriteLine (replacing Print),
WriteIf, and WriteLineIf. (You won't believe it, but there is still no method to clear the Output window!)

A.2.7 Miscellaneous

Here are a few additional changes to consider:

• The VB 6 DoEvents function has been replaced by the DoEvents method of the Application
class of the System.Windows.Forms namespace.

• The VB 6 IsNull and IsObject functions have been replaced by the IsDBNull and IsReference
methods of the Information class of the Microsoft.VisualBasic namespace. Since this
namespace is implicitly loaded by VB as part of the project template when a project is created
in Visual Studio, no Imports statement is required, and the members of its classes can be
accessed without qualification.

• Several VB 6 functions have two versions: a String version and a Variant version. An example
is provided by the Trim$ and Trim functions. In VB .NET, these functions are replaced by a
single overloaded function. Thus, for instance, we can call Trim using either a String or Object
argument.

A.3 Obsolete Programming Elements

The following list shows some of the programming elements that have been removed from Visual
Basic .NET:

As Any

Required all parameters to have a declared data type.

Atn function

Replaced by System.Math.Atan.

Calendar property

Handled by classes in the System.Globalization namespace.

Circle statement

Use methods in the System.Drawing namespace.

Currency data type

Replaced by the Decimal data type.

Date function

Replaced by the Today property of the DateTime structure in the System namespace.

Date statement

Replaced by the Today statement.

Debug.Assert method

Replaced by the Assert method of the Debug class of the System.Diagonistics namespace.

 625

Debug.Print method

Replaced by the Write and WriteLine methods of the Debug class of the System.Diagonistics
namespace.

Deftype statements

Not supported.

DoEvents function

Replaced by the DoEvents method of the Application class in System.Windows.Forms
namespace.

Empty keyword

Replaced by the Nothing keyword.

Eqv operator

Use the equal sign.

GoSub statement

Not supported.

Imp operator

A Imp B is logically equivalent to (Not A) Or B.

Initialize event

Replaced by the constructor method.

Instancing property

Use the constructor to specify instancing.

IsEmpty function

Not supported because the Empty keyword is not supported.

IsMissing function

Not supported because every optional parameter must declare a default value.

IsNull function

Not supported. The Null keyword is replaced by Nothing.

IsObject function

Replaced by the IsReference function.

 626

Let statement

Not supported.

Line statement

Use the DrawLine method of the Graphics class in the System.Drawing namespace.

LSet statement

Use the PadLeft method of the String class in the System namespace.

Null keyword

Use Nothing.

On ...GoSub construction

Not supported. No direct replacement.

On ...GoTo construction

Not supported. No direct replacement. On Error... is still supported, however.

Option Base statement

Not supported. All arrays have lower bound equal to 0.

Option Private Module statement

Use access modifiers in each individual Module statement.

Property Get , Property Let , and Property Set statements

Replaced by a new unified syntax for defining properties.

PSet method

Not supported. No direct replacement. See the System.Drawing namespace.

Round function

Use the Round method of the Math class of the System namespace.

RSet statement

Use the PadRight method of the String class in the System namespace.

Scale method

Not supported. No direct replacement. See the System.Drawing namespace.

Set statement

 627

Not supported.

Sgn function

Use Math.Sign.

Sqr function

Use Math.Sqrt.

String function

Use the String class constructor with parameters.

Terminate event

Use the Destroy method.

Time function and statement

Instead of the Time function, use the TimeOfDay method of the DateTime structure of the
System namespace. Instead of the Time statement, use the TimeOfDay statement.

Type statement

Use the Structure statement.

Variant data type

Use the Object data type.

VarType function

Use the TypeName function or the GetType method of the Object class.

Wend keyword

Replaced by End While.

A.4 Structured Exception Handling

VB .NET has added a significant new technique for error handling. Along with the traditional
unstructured error handling through On Error Goto statements, VB .NET adds structured exception
handling, using the Try...Catch...Finallysyntax supported by other languages, such as C++. We
discuss this in detail in Chapter 7.

A.5 Changes in Object-Orientation

As you may know, Visual Basic has implemented some features of object-oriented programming since
Version 4. However, in terms of object-orientation, the step from Version 6 to VB .NET is very
significant. Indeed, some people did not consider VB 6 (or earlier versions) to be a truly object-
oriented programming language. Whatever your thoughts may have been on this matter, it seems
clear that VB .NET is an object-oriented programming language by any reasonable definition of that
term.

 628

Here are the main changes in the direction of object-orientation. We discuss these issues in detail in
Chapter 3.

A.5.1 Inheritance

VB .NET supports object-oriented inheritance (but not multiple inheritance). This means that a class
can derive from another (base) class, thereby inheriting all of the properties, methods, and events of
the base class. Since forms are also classes, inheritance applies to forms as well. This allows new
forms to be created based on existing forms. We discuss inheritance in detail in Chapter 3.

A.5.2 Overloading

VB .NET supports a language feature known as function overloading . The idea is simple and yet quite
useful. We can use the same name for different functions (or subroutines), as long as the functions
can be distinguished by their argument signature. The argument signature of a function (or subroutine)
is the sequence of data types of the arguments of the function. Thus, in order for two functions to have
the same argument signature, they must have the same number of arguments, and the corresponding
arguments must have the same data type. For example, the following declarations are legal in the
same code module because they have different argument signatures:

Overloads Sub OpenFile()
 ' Ask user for file to open and open it
End Sub

Overloads Sub OpenFile(ByVal sFile As String)
 ' Open file sFile
End Sub

A.5.3 Object Creation

VB 6 supports a form of object creation called implicit object creation. If an object variable is declared
using the New keyword:

Dim obj As New SomeClass

then the object is created the first time it is used in code. More specifically, the object variable is
initially given the value Nothing, and then every time the variable is encountered during code
execution, VB checks to see if the variable is Nothing. If so, the object is created at that time.

VB .NET does not support implicit object creation. If an object variable contains Nothing when it is
encountered, it is left unchanged, and no object is created.

In VB .NET, we can create an object in the same statement as the object-variable declaration, as the
following code shows:

Dim obj As SomeClass = New SomeClass

As a shorthand, we can also write:

Dim obj As New SomeClass

If the object's class constructor takes parameters, then they can be included, as in the following
example:

Dim obj As SomeClass = New SomeClass(argument1, argument2,...)

 629

As a shorthand, we can also write:

Dim obj As New SomeClass(argument1, argument2,...)

For details on class constructors, see Chapter 3.

A.5.4 Properties

There have been a few changes in how VB handles properties, particularly with respect to default
properties and property declarations.

A.5.4.1 Default properties

As you know, you can use default properties in VB 6. For instance, if txt is a textbox control, then:

txt = "To be or not to be"

assigns the string "To be or not to be" to the default Text property of the textbox txt.

However, there is a price to pay for default properties: ambiguity. For example, if txt1 and txt2 are
object variables referencing two TextBox controls, what does:

txt1 = txt2

mean? Are we equating the default properties or the object variables? In VB 6, this is interpreted as
equating the default properties:

txt1.Text = txt2.Text

and we require the Set statement for object assignment:

Set txt1 = txt2

In VB .NET, default properties are not supported unless the property takes one or more parameters, in
which case there is no ambiguity.

As Microsoft points out, default properties occur most commonly with collection classes. For example,
in ActiveX Data Objects (ADO), the Fields collection of the Recordset object has a default Item
property that returns a particular Field object. Thus, we can write:

rs.Fields.Item(1).Value

or, since the default Item property is parameterized:

rs.Fields(1).Value

Although we may not be used to thinking of this line as using default properties, it does.

Thus, in VB .NET, the line:

txt1 = txt2

is an object assignment. To equate the Text properties, we must write:

 630

txt2.Text = txt1.Text

Since it is no longer needed, the Set keyword is not supported under VB .NET, nor is the companion
Let keyword.

This settles the issue of equating object variables. For object variable comparison, however, we must
use the Is operator, rather than the equal sign, as in:

If txt1 Is txt2 Then

or:

If Not (txt1 Is txt2) Then

A.5.4.2 Property declarations

In VB 6, properties are defined using PropertyLet, PropertySet, and PropertyGet procedures.
However, VB .NET uses a single property-declaration syntax of the form shown in the following
example. Note also that there is no longer a need to distinguish between PropertyLet and
PropertySet because of the changes in default property support.

Property Salary() As Decimal
 Get
 Salary = mdecSalary
 End Get
 Set
 mdecSalary = Value
 End Set
End Property

Note the use of the implicitly defined Value variable that holds the value being passed into the
property procedure when it is being set.

Note also that VB .NET does not support ByRef property parameters. All property parameters are
passed by value.

 631

Appendix B. Language Elements by Category

This appendix lists by category all the directives, statements, functions, procedures, and classes
available within the VB.NET language. We have also included those Foundation Class Library
members that are documented in this book. The categories are:

Array Handling
Clipboard
Collection Objects
Common Dialogs
Conditional Compilation
Conversion: Data Type Conversion and Other Conversion
Date and Time
Error Handling
Filesystem
Financial
IDataObject Interface
Information
Input/Output
Interaction
Mathematics
Programming: Object Programming and Miscellaneous Programming
Program Structure and Flow
Registry
String Manipulation
Variable and Constant Declaration

Where necessary, individual keywords may appear in more than one category.

B.1 Array Handling
Element Description

Array class Represents an array
Array.BinarySearch
method Searches for a value in a sorted one-dimensional array

Array.Copy method Copies all or part of an array

Array.IndexOf method Searches for the first occurrence of a value in an unsorted one-
dimensional array

Array.LastIndexOf method Searches for the last occurrence of a value in an unsorted one-
dimensional array

Erase statement Resets an array to its uninitialized state
IsArray function Indicates whether a variable is an array
Join function Concatenates an array of values into a delimited string
LBound function Returns the lower boundary of an array
ReDim statement Redimensions an array
UBound function Returns the upper boundary of an array

B.2 Clipboard
Element Description

Clipboard.GetDataObject
method Places data on the Clipboard

Clipboard.SetDataObject method Retrieves an IDataObject object representing data on the
Clipboard

 632

B.3 Collection Objects
Element Description

Collection.Add method Adds a member to a Collection object
Collection.Count method Indicates the number of items stored to a Collection object

Collection.Item method Retrieves a member from a Collection object based on its key value or
its ordinal position

Collection.Remove method Removes the member associated with a given key or ordinal position
from a Collection object

Hashtable.Add method Adds a key-value pair to a HashTable object
Hashtable.Clear method Removes all entries from the hash table
Hashtable.ContainsKey
method Indicates whether a given key exists among the hash table's items

Hashtable.ContainsValue
method Indicates whether a given value exists among the hash table's items

Hashtable.CopyTo method Copies hash table values into an array of DictionaryEntry structures
Hashtable.Count property Indicates the total number of elements in the hash table
Hashtable.Item property Retrieves the value of a hash table item given its key

Hashtable.Keys property Returns an ICollection object that contains the keys in the hash
table

Hashtable.Remove method Removes a key/value pair from the hash table

Hashtable.Values property Returns an ICollection object that contains the values in the hash
table

Queue.Clear method Clears all items in the queue
Queue.Contains method Indicates whether the queue contains a particular object
Queue.CopyTo method Copies the queue elements to an array
Queue.Count method Indicates the total number of items in the queue
Queue.Dequeue method Removes an item from the queue
Queue.Enqueue method Places an item at the end of the queue
Queue.Peek method Returns the first item in the queue
Queue.ToArray method Copies the queue elements to an array
Stack.Clear method Clears all items in the stack
Stack.Contains method Indicates whether the stack contains a particular object
Stack.CopyTo method Copies the items in the stack to an array
Stack.Count method Indicates the total number of items in the stack
Stack.Peek method Returns the item at the top of the stack
Stack.Pop method Removes the topmost item from the stack
Stack.Push method Places an item at the top of the stack
Stack.ToArray method Copies the items on the stack to an array

B.4 Common Dialogs
Element Description

ColorDialog class Allows programmatic control of the Windows Common Color dialog box
FontDialog class Allows programmatic control of the Windows Common Font dialog box
OpenFileDialog class Allows programmatic control of the Windows File Open dialog box
SaveFileDialog class Allows programmatic control of the Windows SaveAs dialog box

B.5 Conditional Compilation
Element Description

 633

#Const directive Declares a conditional compiler constant
#If...Then...End If
directive

Defines a block of code that will only be compiled into the program if the
expression with the conditional constant evaluates to True

B.6 Conversion

B.6.1 Data Type Conversion

Element Description
CBool function Converts an expression to a Boolean data type
CByte function Converts an expression to a Byte data type
CChar function Converts a string expression to a Char data type
CDate function Converts an expression to a Date data type
CDbl function Converts an expression to a Double data type
CDec function Converts an expression to a Decimal data type
CInt function Converts an expression to an Integer data type
CLng function Converts an expression to a Long data type
CObj function Converts an expression to an Object data type
CSng function Converts an expression to a Single data type
CStr function Converts an expression to a String data type

CType function Converts an expression to any valid data type, structure, object type, or
interface

DateValue function Converts the string representation of a date to a date
Option Strict
statement Determines whether narrowing operations are allowed

Str function Converts a numeric value to a string
TimeValue function Converts a string representation of time to a Date data type
Val function Converts a numeric string to a number
ValDec function Converts a numeric string to a Decimal data type

B.6.2 Other Conversion

Element Description
ErrorToString method Returns the descriptive error message corresponding to a particular error code
Fix function Returns the integer portion of a number
Hex function Converts a number to a string representing its hexadecimal equivalent
Int function Returns the integer portion of a number
Oct function Converts a number to a string representing its octal equivalent
QBColor function Converts a QBasic color code to an RGB color value
RGB function Returns a system color code that can be assigned to object color properties

B.7 Date and Time
Element Description

DateAdd function Returns the result of adding or subtracting a date or time
DateDiff function Returns the difference between two dates
DatePart function Returns the part (month, day, year) of the date requested

DateSerial function Returns a date from an expression containing month, day, and year
components

 634

DateString property Retrieves or sets the current system date
DateValue function Converts the string representation of a date to a date
Day function Returns a number representing the day of the month
GetTimer function Returns the number of seconds since midnight
Hour function Extracts the hour element from a time
Minute function Extracts the minutes element from a time
Month function Extracts the month element from a date
MonthName function Returns the name of the month for a given date
Now property Returns the current system date and time
Second function Extracts the seconds element from a time
TimeOfDay property Sets or retrieves the current system time
Timer property Returns the number of seconds that have elapsed since midnight
TimeSerial function Returns a time from its hour, minute, and second components
TimeString property Sets or returns the current system time
TimeValue function Converts a string representation of time to a Date data type
Today property Sets or retrieves the current system date
Weekday function Determines the day of the week of a given date
WeekdayName
function Returns the weekday name for a given weekday number

Year function Returns the year element from a date

B.8 Debugging
Element Description

Debug.Assert method Outputs a message if an expression is False
Debug.AutoFlush
property

Determines whether each write operation should be followed by a call to the
Flush method

Debug.Close method Flushes the output buffer and closes any listeners except the Output
window

Debug.Flush method Flushes the output buffer
Debug.Indent method Increases the value of the IndentLevel property by 1
Debug.IndentLevel
property Determines the indent level for Debug object output

Debug.IndentSize
property Defines the current indent size, in number of spaces

Debug.Listeners property
Returns a collection of all TraceListener objects that are monitoring the
Debug object's output

Debug.Unindent method Decreases the value of the IndentLevel property by 1
Debug.Write method Sends output to the Output window and other listeners

Debug.WriteIf method Sends output to the Output window and other listeners if an expression is
True

Debug.WriteLine method Writes output along with a newline character to the Output window
Debug.WriteLineIf
method

Writes output along with a newline character to the Output window if an
expression is True

B.9 Declaration
Element Description

Const statement Declares a constant
Class...End Class
statement Defines a class

 635

Declare statement Defines a prototype for a call to an external DLL library function
Dim statement Declares a variable
Enum statement Defines a series of constants as an enumerated type
Function statement Defines a function

Friend keyword Makes a procedure in a class callable from outside the class but within
the project in which the class is defined

Option Explicit statement Requires declaration of all variables
Private statement Declares a local variable
Property statement Defines a property
Protected statement Declares a protected class member
Public statement Declares a public or global variable
Static statement Declares a static variable
Structure...End Structure
statement Declares a structure or user-defined type

Sub statement Declares a subroutine

B.10 Error Handling
Element Description

Erl function Indicates the line number at which an error occurred
Err.Clear method Clears the Err object
Err.Description property Provides a textual description of an error
Err.GetException method Returns the Exception object associated with the current error
Err.HelpContext property Returns or sets the help file ID for the current error

Err.HelpFile property Returns or sets the name and path of the help file containing information
about the current error

Err.LastDLLError property Returns the error number from an error raised by a system API DLL
Err.Number property Returns or sets the current error code
Err.Raise method Generates a user-defined error
Err.Source property Returns or sets the source of an error
ErrorToString function Converts an error number to the corresponding error message
Exception class Base class for all exceptions
IsError function Determines whether an object is an exception type
On Error statement Enables or disables an error handler
Resume statement Transfers control from an error handler
Throw statement Throws an exception
Try...Catch...Finally
statement

Handles particular errors that may occur in a block of code through
structured exception handling

B.11 Filesystem
Element Description

ChDir procedure Changes the current directory
ChDrive procedure Changes the current drive
CurDir function Returns the current directory of a drive

Dir function Returns the name of a file or directory matching a file
specification and having particular file attributes

Directory.CreateDirectory method Creates a new directory
Directory.Delete method Deletes a directory
Directory.Exists method Indicates whether a particular directory exists

 636

Directory.GetCreationTime method Retrieves the date and time the directory was created
Directory.GetDirectories method Retrieves the names of the subdirectories of a given directory
Directory.GetDirectoryRoot method Retrieves the name of the root directory of a given directory
Directory.GetFiles Retrieves the names of the files in a given directory
Directory.GetFileSystemEntries
method

Retrieves the names of filesystem objects (files and directories)
in a given directory

Directory.GetParent method Retrieves a DirectoryInfo object representing the parent of a
specified directory

Directory.Move method Moves a directory and its contents, including nested
subdirectories, to a new location

File.Exists method Indicates whether a specified file exists
FileCopy function Copies a file
FileDateTime function Returns the date and time of file creation or last access
GetAttr function Returns the attributes of a given file or directory
Kill function Deletes one or more files
MkDir function Creates a new directory
Rename function Renames a file or directory
RmDir function Removes a directory
SetAttr procedure Sets a file or directory's attributes

B.12 Financial
Element Description

DDB
function Returns double-declining balance depreciation of an asset for a specific period

FV function Calculates the future value of an annuity
IPmt
function Computes the interest payment for a given period of an annuity

IRR function Calculates the internal rate of return for a series of periodic cash flows
MIRR
function Calculates the modified internal rate of return

NPer
function

Determines the number of payment periods for an annuity, based on fixed periodic
payments and a fixed interest rate

NPV
function Calculates the net present value of an investment

Pmt function Calculates the payment for an annuity
PPmt
function Computes the payment of principal for a given period of an annuity

PV function Calculates the present value of an annuity
Rate
function Returns the interest rate per period for an annuity

SLN method Computes the straight-line depreciation of an asset
SYD
function Computes the sum-of-years' digits depreciation of an asset for a specified period

B.13 IDataObject Interface
Element Description

GetData method Retrieves data from the Clipboard in a given format
GetDataPresent
method Indicates whether the Clipboard holds data of a particular format

GetFormats method Retrieves a list of all the formats with which the Clipboard data is associated or

 637

to which it can be converted

B.14 Information
Element Description

Application.CompanyName
property Returns the name of the company that created the application

Application.ExecutablePath
property Returns the executable path to the application

Application.ProductName property Returns the application's product name
Application.ProductVersion
property Returns the application's version number

Erl function Indicates the line number at which an error occurred
IsArray function Indicates whether a variable is an array
IsDate function Indicates whether an argument is?or can be converted to?a date
IsDBNull function Determines whether an expression evaluates to DbNull
IsError function Determines whether an object is an exception type
IsNothing function Determines if an object reference evaluates to Nothing

IsNumeric function Determines if an expression is a number or can be converted to a
number

IsReference function Determines if an expression is a reference type rather than a value
type

RGB function Returns a system color code that can be assigned to object color
properties

Rem statement Indicates a remark or comment placed within the code
ScriptEngine function Returns the name of the programming language
ScriptEngineBuildVersion function Returns the build number
ScriptEngineMajorVersion function Returns the major version
ScriptEngineMinorVersion function Returns the minor version

SystemTypeName function Returns the name of the CTS datatype corresponding to a VB.NET
datatype

TypeName function Returns the data type name of a variable
VarType function Returns a constant indicating the data type of a variable

VbTypeName function Returns the name of a VB .NET datatype that corresponds to a
CTS datatype

B.15 Input/Output
Element Description

EOF function Returns a flag denoting the end of a file

FileAttr function Returns the file-access mode for a file opened using the FileOpen
statement

FileClose function Closes one or more open files
FileGet, FileGetObject
functions Read from a file to a variable

FileLen function Returns the size of an open file
FileOpen function Opens a file
FilePut, FilePutObject
functions Writes from a variable to a file

FileWidth function Sets the line width of a file opened using the FileOpen function.
FreeFile function Returns the number of the next available file

 638

Input function Reads delimited data from a sequential file
InputString function Reads a designated number of characters from a file
LineInput function Returns a string containing a line read from a file
Loc function Returns the current position of the read/write pointer in a file

Lock function Locks a file, section of a file, or record in a file to prevent access by
another process

LOF function Returns the size of an open file in bytes
Print function Writes formatted data to a sequential file
PrintLine function Writes formatted data followed by a linefeed to a sequential file
Reset function Closes all open files
Seek function Returns the position of the file pointer
Seek procedure Sets the position of the file pointer
Spc function Inserts spaces between expressions in output

Tab function Moves the text-insertion point to a given column or the start of the next
print zone

B.16 Integrated Development Environment
Element Description

#Region...#End Region Defines collapsible sections of code in VB source code files
Debug object Provides debugging services for the Output window and other listeners

B.17 Interaction
Element Description

AppActivate statement Gives the focus to a window based on its title or task ID
AppActivateHelper
statement Gives the focus to a window based on its window handle

Beep statement Sounds a note using the computer speaker
Choose function Returns a value from a list based on its index
Command function Returns the argument portion of the command line
Environ function Retrieves the value of an environment variable
IIf function Returns one of two values based on the evaluation of a Boolean expression
InputBox function Returns user input from a simple dialog box

MsgBox function Displays a message box with buttons, icon, and a message, and returns the
button selected by the user

Shell function Launches an external application
Switch function Returns the first value or expression in a list that is True
Send, SendWait methods Send keystrokes to the active window

B.18 Mathematics
Element Description

Abs function Returns the absolute value of a number
Acos function Returns the arccosine in radians
Asin function Returns the angle in radians of a sine
Atan function Returns the arctangent in radians of a tangent

Atan2 function Returns the angle in the Cartesian plane formed by the x-axis and a vector
starting from the origin (0, 0) and terminating at a point (x, y)

Ceiling function Returns the smallest integer that's greater than or equal to a number
Cos function Returns the cosine of an angle

 639

Cosh function Returns the hyperbolic cosine of an angle
E Field Returns the approximate value of the irrational number e
Exp function Returns the base of a natural logarithm raised to a power
Fix function Returns the integer portion of a number
Floor function Returns the largest integer less than or equal to a number
IEEERemainder
function Returns the remainder resulting from division

Int function Returns the integer portion of a number
Log function Returns the natural (base e) logarithm of a given number
Log10 function Returns the common (base 10) logarithm of a given number
Max function Returns the larger of two numbers
Min function Returns the smaller of two numbers
Mod operator Returns the modulus (the remainder after division)
Partition function A string indicating the range into which a number falls
Pi Field Returns the approximate value of pi
Pow function Returns the result of a number raised to a specified power
Randomize function Initializes the random-number generator
Rnd function Returns a random number
Round function Rounds a number to a specified number of decimal places
Sign function Determines the sign of a number
Sin function Returns the sine of an angle
Sinh function Returns the hyperbolic sine of an angle
Sqrt function Calculates the square root of a number
Tan function Returns the ratio of two sides of a right triangle
Tanh function Returns the hyperbolic tangent of an angle

B.19 Program Structure and Flow
Element Description

Call statement Calls an intrinsic or user-defined procedure or function, a method, or a
routine in a dynamic link library

CallByName statement Dynamically executes a class method, property let, or property set
Do...Loop statement Repeatedly executes a block of code while or until a condition is true
Exit statement Prematurely exits a code block
End statement Marks the end of a block of code
For...Next statement Iterates through a section of code a given number of times
For Each...Next
statement

Iterates through a collection or array of objects or values, returning a
reference to each of the members

GoTo statement Passes program flow to a portion of code marked by a label
If...Then...Else
statement Defines a conditional block or blocks of code

Return statement Transfers control from a function or procedure and returns a value from a
function

Select Case statement Executes one out of a series of code blocks based on the value of an
expression

Stop statement Suspends program execution
While...End While
statement Executes a block of code until a condition becomes False

 640

B.20 Programming

B.20.1 Object Programming

Element Description

AddressOf operator Creates a procedure delegate instance that references a particular
procedure

Class...End Class
statement Defines a class and its members

CreateObject function Creates a new instance of a COM (ActiveX) object
Event statement Declares a custom event
Get statement Defines a Property Get procedure that returns a property value to the caller
GetObject function Returns a reference to a COM (ActiveX) object
Handles keyword Indicates that the procedure serves as the handler for an event

Implements keyword Indicates that a class member implements a property, function, procedure,
or event of an abstract base class

Implements statement Specifies one or more interfaces that are implemented by a class

Imports statement Imports a namespace from a project or an assembly, making its types and
their members accessible to the current project

Inherits statement Indicates that a class is derived from a base class
Interface...End Interface
statement Defines an interface and its members

Is operator Compares two object references for equality
Me operator Represents the current class instance
MyBase keyword Represents the base class from which an inherited class is derived
MyClass keyword Represents the current class instance
Namespace statement Declares the name of a namespace
Property statement Defines a property
RaiseEvent statement Raises a custom event

Shadows keyword Indicates that a derived class member is hidden when calls to the derived
class member are made through the base class

WithEvents statement Receives notification of events raised by an object

B.20.2 Miscellaneous Programming

Element Description

AddressOf operator Creates a procedure-delegate instance that references a particular
procedure

Application.DoEvents
method

Allows the operating system to process events and messages waiting in
the message queue

Declare statement Defines a prototype for a call to an external DLL library function
Environ statement Retrieves the value of an environment variable
Len function Returns the size in bytes of a given variable

SyncLock statement Prevents multiple threads of execution in the same process from accessing
shared data or resources at the same time

B.21 Registry
Element Description

DeleteSetting Removes a complete application key, one of its subkeys, or a single value entry

 641

statement from the system registry
GetAllSettings
function Returns all values from an application key in the system registry

GetSetting function Returns a specific value from an application key in the system registry
SaveSetting
procedure Creates or saves a value in the system registry

B.22 String Manipulation
Element Description

Asc, AscW functions Return the character code of the first character of a string
Chr, ChrW functions Return a string containing a character based on its numeric code
Filter function Returns an array of strings matching (or not matching) a specified value
Format function Returns a string formatted to a given specification
FormatCurrency
function Returns a string formatted using the currency settings for the current locale

FormatDateTime
function Returns a string formatted using the date/time setting for the current locale

FormatNumber function Returns a numeric value in a specified format
FormatPercent function Returns a numeric value formatted using the "%" symbol
GetChar function Returns a Char containing the character at a particular position in a string
InStr function Finds the starting position of a substring within a string

InStrRev function Returns the first occurrence of a string within another string by searching
from the end of the string

Join function Concatenates an array of values into a delimited string
LCase function Converts a character or string to lowercase
Left function Returns a string containing the leftmost n characters of a string
Len function Counts the number of characters in a string
Like operator Compares two strings
Mid function Extracts a substring from a larger string
Mid statement Replaces a substring in a larger string
Option Compare
statement Sets the default method for comparing string data

Replace function Replaces one or more occurrences of a substring within a larger string
Right function Returns a string containing the rightmost characters of another string
RTrim function Removes any trailing spaces from a string
Str function Converts a numeric value to a string
Spc function Inserts spaces between expressions in output
Space function Fills a string with a given number of spaces
Split function Returns an array of strings from a single delimited string
StrComp function Returns the result of comparing two strings
StrConv function Returns the result of converting a string in a number of possible ways

StrDup function Returns a string consisting of the first character of another string duplicated a
given number of times

StrReverse function Reverses the characters of the strings passed to it
Trim function Removes leading and trailing spaces from a string
UCase function Converts a string to uppercase
Val function Converts a numeric string to a number

 642

 643

Appendix C. Operators

There are four groups of operators in VB .NET: arithmetic, concatenation, comparison, and logical. We
will look at each group of operators in turn before discussing the order of precedence VB .NET uses
when it encounters more than one type of operator within an expression.

C.1 Arithmetic Operators

The arithmetic operators are:

+

The addition operator. Used to add numeric expressions, as well as to concatenate (join
together) two string variables. However, it is preferable to use the concatenation operator with
strings to eliminate ambiguity. For example:

result = expression1 + expression2
-

The subtraction operator. Used to find the difference between two numeric values or
expressions, as well as to denote a negative value. Unlike the addition operator, it cannot be
used with string variables. For example:

result = expression1 - expression2
/

The division operator. Returns a floating point number. For example:

result = expression1 / expression2
*

The multiplication operator. Used to multiply two numerical values. For example:

result = expression1 * expression2
\

The integer division operator. Performs division on two numeric expressions and returns an
integer result (no remainder or decimal places). For example:

result = expression1 \ expression2

Note that regardless of what specific numeric data types expression1 and expression2
are, integer division returns only an integral data type (Byte, Short, Integer, or Long). After the
division is performed, the result is truncated to an integer data type.

Mod

The modulo operator. Performs division on two numeric expressions and returns the modulus,
that is, the remainder when one number is divided by another. If either of the two numbers are
floating point numbers, they are rounded to integer values prior to the modulo operation. The
return value is a non-negative integral data type. For instance, the expression:

10 Mod 3

 644

evaluates to 1, because the remainder when dividing 10 by 3 is 1. For example:

result = expression1 Mod expression2
^

The exponentiation operator. Raises a number to the power of the exponent. For example:

result = number ^ exponent

C.2 Assignment Operators

Along with the equal operator, there is one assignment operator that corresponds to each arithmetic
and concatenation operator. Its symbol is obtained by appending an equal sign to the arithmetic or
concatenation symbol.

The arithmetic and concatenation operators work as follows. They all take the form:

expression1 <operator>= expression2

where <operator> is one of the arithmetic or concatenation operators. This is equivalent to:

expression1 = expression1 <operator> expression2

To illustrate, consider the addition assignment operator. The expression:

x += 1

is equivalent to:

x = x + 1

which simply adds 1 to x. Similarly, the expression:

s &= "end"

is equivalent to:

s = s & "end"

which concatenates the string "end" to the end of the string s.

All of the "shortcut" assignment operators—such as the addition
assignment operator or the concatenation assignment operator—
are new to VB .NET.

The assignment operators are:

=

The equal operator, which is both an assignment operator and a comparison operator. For
example:

oVar1 = oVar2

 645

Note that in VB .NET, the equal operator alone is used to assign all data types; in previous
versions of VB, the Set statement had to be used along with the equal operator to assign an
object reference.

+=

Addition assignment operator. For example:

lNumber += 1

adds 1 to the value of lNumber and assigns the result to lNumber.

-=

Subtraction assignment operator. For example:

lNumber -= 1

subtracts 1 from the value of lNumber and assigns the result to lNumber.

^=

Exponential assignment operator. For example:

lNumber ^= 2

squares lNumber and assigns the result to lNumber.

*=

Multiplication assignment operator. For example:

lNumber *= 3

triples lNumber and assigns the result to lNumber.

/=

Division assignment operator. For example:

lNumber /= 2

halves lNumber and assigns the result to lNumber.

\=

Integer division assignment operator. For example:

dblNumber \= 2

divides dblNumber by 2, discards any fractional part, and assigns the result to dblNumber.

&=

Concatenation assignment operator. For example:

 646

strVal &= "."

appends a period to the end of strVal.

Unlike the comparison operators, in which the order of symbols is
reversible (that is, >= is the same as =>), the order of the
"shortcut" operator symbols is not reversible. For example, while:

x += 1

increments x by 1, the expression:

x =+ 1

simply assigns 1 to the variable x.

C.3 Concatenation Operators

VB .NET has two string concatenation operators:

&

The ampersand symbol is the recommended concatenation operator. It is used to bind a
number of string variables together, creating one string from two or more individual strings.
Any nonstring variable or expression is converted to a string prior to concatenation (even if
Option Strict is on). Its syntax is:

result = expression1 & expression2...
+

Although in principle the + sign is identical to the & concatenation operator, it also doubles as
the addition operator. Hence, as Microsoft states:

When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur. Use the & operator for concatenation to eliminate ambiguity and
provide self-documenting code.

C.4 Comparison Operators

There are three main comparison operators: < (less than), > (greater than), and = (equal to). They can
be used individually, or any two operators can be combined with each other. Their general syntax is:

result = expression1 <operator> expression2

The resulting expression is True (-1), False (0), or Null. A Null results if and only if either
expression1 or expression2 itself is Null.

What follows is a list of all the comparison operators supported by VB .NET, as well as an explanation
of the condition required for the comparison to result in True:

>

expression1 is greater than and not equal to expression2.

 647

<

expression1 is less than and not equal to expression2.

<>

expression1 is not equal to expression2 (less than or greater than).

>=

expression1 is greater than or equal to expression2.

<=

expression1 is less than or equal to expression2.

=

expression1 is equal to expression2.

Comparison operators can be used with both numeric and string variables. However, if one expression
is numeric and the other is a string, the numeric expression will always be "less than" the string
expression. If both expression1 and expression2 are strings, the "greatest" string is the one that
is the longest. If the strings are of equal length, the comparison is based on the value of the Option
Compare setting. If its value is Binary, the comparison is case sensitive. (Lowercase letters are
"greater" than their uppercase counterparts.) If its value is Text, the comparison is not case sensitive.

C.4.1 The Is Operator

While not strictly a comparison operator, the Is operator determines whether two object reference
variables refer to the same object. Thus, in some sense, it tests for the "equality" of two object
references. Its syntax is:

result = object1 Is object2

If both object1 and object2 refer to the same object, the result is True; otherwise, the result is
False. You can also use the Is operator to determine if an object variable refers to a valid object.
This is done by comparing the object variable to the special Nothing data type:

If oVar Is Nothing Then

The result is True if the object variable does not hold a reference to an object.

C.4.2 The Like Operator

The Like operator is used to match strings. It compares a string variable or string literal with a pattern
expression and determines whether they match (the result is True) or not (the result is False). For
more on this operator, see the entry for the Like Operator in the reference section.

C.5 Logical and Bitwise Operators

Logical operators allow you to evaluate one or more expressions and return a Boolean value (True or
False). VB .NET supports four logical operators: And, Or, Not, and Xor. These operators also double
as bitwise operators. A bitwise comparison examines the bit positions in both expressions and sets or

 648

clears the corresponding bit in the result, depending upon the operator used. The result of a bitwise
operation is a numeric value.

In performing logical operations, VB .NET, unlike VB 6, uses conditional short-circuiting. This means
that, in compound logical expressions, the individual expressions are evaluated only until the
expression's overall value is known, unless one of the individual expressions involves a call to another
function or subroutine. Short-circuiting can occur in logical And operations when the first operand
evaluates to False, as well as in logical Or operations when the first operand evaluates to True.

The four logical and bitwise operators are:

And

Performs logical conjunction; that is, it returns True if and only if both expression1 and
expression2 evaluate to True. If either expression is False, then the result is False. If
either expression is Null, then the result is Null. Its syntax is:

result = expression1 And expression2

For example:

If (x = 5) And (y < 7) Then

In this case, the code after the If statement will be executed only if the value of x is five and
the value of y is less than seven.

As a bitwise operator, And returns 1 if the compared bits in both expressions are 1, and
returns 0 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0
0 1 0
1 0 0
1 1 1

For example, the result of 15 And 179 is 3, as the following binary representation shows:

00000011 = 00001111 And 10110011
Or

Performs logical disjunction; that is, it returns True if and only if at least one (that is, one or
both) of expression1 or expression2 evaluates to True. If either expression is Null,
then the result is also Null. The syntax for the Or operator is:

result = expression1 Or expression2

For example:

If x = 5 Or y < 7 Then

In this case, the code after the If statement will be executed if the value of x is five or if the
value of y is less than seven.

 649

As a bitwise operator, Or is the converse of And. Or returns 0 if the compared bits in both
expressions are 0, and returns 1 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0
0 1 1
1 0 1
1 1 1

For example, the result of 15 Or 179 is 191, as the following binary representation shows:

10111111 = 00001111 Or 10110011
Not

Performs logical negation on a single expression; that is, it returns True if and only if the
expression is False. If the expression is Null, though, the result of using the Not operator is
still a Null. Its syntax is:

result = Not expression1

For example:

If Not IsNumeric(x) Then

In this example, the code following the If statement will be executed if IsNumeric returns
False, indicating that x is not a value capable of being represented by a number.

As a bitwise operator, Not simply reverses the value of the bit, as shown in the following table:

expression1 Result
0 1
1 0

For example, the result of Not 16 is 239, as the following binary representation shows:

Not 00010000 = 11101111
Xor

Performs logical exclusion; that is, Xor (an abbreviation for eXclusive OR) returns True if and
only the two expressions have different truth values. If either expression is Null, the result is
also Null. Its syntax is:

result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 if the bits being compared are different and returns 0 if
they are the same, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0
0 1 1
1 0 1
1 1 0

 650

Eqv and Imp

Eqv and Imp, two logical and bitwise operators, present in VB 6, have been
removed from VB .NET. Eqv can simply be replaced with the = comparison
operator. Hence, the expression:

exp1 Eqv exp2

is the same as:

exp1 = exp2

Imp can be replaced with an expression using the Not and Or operators.
For example:

exp1 Imp exp2

can also be expressed as:

(Not exp1) Or exp2

For example, the result of 15 Xor 179 is 188, as the following binary
representation shows:

10111100 = 00001111 Imp 10110011

C.6 Operator Precedence

If you include more than one operator in a single line of code, you need to know the order in which
VB .NET will evaluate them. Otherwise, the results may be completely different from what you
intended. The rules that define the order in which a language handles operators is known as the order
of precedence. If the order of precedence results in operations being evaluated in an order other than
the intended one, you can explicitly override the order of precedence through the use of parentheses.
Indeed, we strongly recommend the use of sufficient parentheses to avoid any possible
misinterpretation. Put another way, we recommend using enough parentheses so that operator
precedence is no longer relevant!

When a single line of code includes operators from more than one category, they are evaluated in the
following order:

Arithmetic operators
Concatenation operators
Comparison operators
Logical operators

Within each category of operators, except for the single concatenation operator, there is also an order
of precedence. If multiple comparison operators appear in a single line of code, they are simply
evaluated from left to right. The order of precedence of arithmetic operators is as follows:

Exponentiation (^)
Division and multiplication (/,*) (no order of precedence between the two)
Integer division (\)

 651

Modulo arithmetic (Mod)
Addition and subtraction (+,-) (no order of precedence between the two)

If the same arithmetic operator is used multiple times in a single line of code, the operators are
evaluated from left to right.

The order of precedence of logical operators is:

Not
And
Or
Xor

If the same arithmetic or logical operator is used multiple times in a single line of code, the operators
are evaluated from left to right.

 652

 653

Appendix D. Constants and Enumerations

This appendix consists of a reference for Visual Basic's built-in constants and enumerations.

VB .NET defines several enumerations in the Microsoft.VisualBasic namespace. For instance, the
CompareMethod enumeration is defined as:

Enum CompareMethod
 Binary = 0
 Text = 1
End Enum

Thus, we can use the following expressions in our VB code:

CompareMethod.Binary
CompareMethod.Text

On the other hand, VB also defines two equivalent built-in constants in the Constants class of the
Microsoft.VisualBasic namespace that serve the same purpose:

VbBinaryCompare
VbTextCompare

Note, however, that VB does not define built-in constants corresponding to every member of every
enum. For instance, there are no built-in constants that correspond to the OpenMode enum members.
This enum is used in the FileOpen procedure/statement:

Enum OpenMode
 Input = 1
 Output = 2
 Random = 4
 Append = 8
 Binary = 32
End Enum

In this appendix, we list all of the VB constants and enumerations.

D.1 Visual Basic Intrinsic Constants

Table D-1 contains an alphabetical list of VB's built-in symbolic constants.

Table D-1. Visual Basic constants
Constant Value

VbAbort 3
VbAbortRetryIgnore &H00000002
VbApplicationModal &H00000000
VbArchive 32
VbArray 8192
VbBack Chr(8)
VbBinaryCompare 0
VbBoolean 11
VbByte 17

 654

VbCancel 2
VbCr Chr(13)
VbCritical &H00000010
VbCrLf Chr(13) & Chr(10)
VbCurrency 6
VbDate 7
VbDecimal 14
VbDefaultButton1 &H00000000
VbDefaultButton2 &H00000100
VbDefaultButton3 &H00000200
VbDirectory 16
VbDouble 5
VbEmpty 0
VbExclamation &H00000030
VbFalse 0
VbFirstFourDays 2
VbFirstFullWeek 3
VbFirstJan1 1
VbFormFeed Chr(12)
VbFriday 6
VbGeneralDate 0
VbGet 2
VbHidden 2
VbHide 0
VbHiragana 32
VbIgnore 5
VbInformation &H00000040
VbInteger 3
VbKatakana 16
VbLf Chr(10)
VbLinguisticCasing 1024
VbLong 20
VbLongDate 1
VbLongTime 3
VbLowerCase 2
VbMaximizedFocus 3
VbMethod 1
VbMinimizedFocus 2
VbMinimizedNoFocus 6
VbMonday 2
VbMsgBoxHelp &H00004000
VbMsgBoxRight &H00080000
VbMsgBoxRtlReading &H00100000
VbMsgBoxSetForeground &H00010000
VbNarrow 8
VbNewLine Chr(13) & Chr(10)
VbNo 7
VbNormal 0

 655

VbNormalFocus 1
VbNormalNoFocus 4
VbNull 1
VbNullChar Chr(0)
VbNullString
VbObject 9
VbObjectError &H80040000
VbOK 1
VbOKCancel &H00000001
VbOKOnly &H00000000
VbProperCase 3
VbQuestion &H00000020
VbReadOnly 1
VbRetry 4
VbRetryCancel &H00000005
VbSaturday 7
VbSet 8
VbShortDate 2
VbShortTime 4
VbSimplifiedChinese 256
VbSingle 4
VbString 8
VbSunday 1
VbSystem 4
VbSystemModal &H00001000
VbTab Chr(9)
VbTextCompare 1
VbThursday 5
VbTraditionalChinese 512
VbTrue 1
VbTuesday 3
VbUpperCase 1
VbUseDefault &HFFFFFFFE
VbUserDefinedType 36
VbUseSystem 0
VbUseSystemDayOfWeek 0
VbVariant 12
VbVerticalTab Chr(11)
VbVolume 8
VbWednesday 4
VbWide 4
VbYes 6
VbYesNo &H00000004
VbYesNoCancel &H00000003

 656

D.2 ControlChars Class

The Microsoft.VisualBasic namespace includes a ControlChars class whose shared fields can be used
for device control and outputting special characters. Most of the shared fields also have equivalent
Visual Basic intrinsic constants, as the following table shows:

Field Value Intrinsic constant
Back Chr(8) VbBack

Cr Chr(13) VbCr

CrLf \r\n VbCrLf

FormFeed Chr(12) VbFormFeed

Lf Chr(10) VbLf

NewLine \r\n VbNewLine

NullChar Chr(0) VbNullChar

Quote Chr(34) none
Tab Chr(9) VbTab

VerticalTab Chr(11) VbVerticalTab

Note that these constants must be qualified with the class name, as in:

If str = ControlChars.CrLf Then

D.3 Visual Basic Enumerations

The following is a list of VB enumerations, along with the VB constants that can be used in place of
individual enumeration members. In a few cases, there seem to be missing VB intrinsic constants.
These are marked with a question mark (?).

Note that all enumeration members must be qualified with the name of the enumeration to which they
belong.

D.3.1 AppWinStyle Enumeration

Enum AppWinStyle
 Hide = 0 ' VbHide
 NormalFocus = 1 ' VbNormalFocus
 MinimizedFocus = 2 ' VbMinimizedFocus
 MaximizedFocus = 3 ' VbMaximizedFocus
 NormalNoFocus = 4 ' VbNormalNoFocus
 MinimizedNoFocus = 6 ' VbMinimizedNoFocus
End Enum

D.3.2 CallType Enumeration

Enum CallType
 Method = 1 ' VbMethod
 Get = 2 ' VbGet
 Set = 8 ' VbSet, vbLet
End Enum

D.3.3 CompareMethod Enumeration

Enum CompareMethod

 657

 Binary = 0 ' VbBinaryCompare
 Text = 1 ' VbTextCompare
End Enum

D.3.4 DateFormat Enumeration

Enum DateFormat
 GeneralDate = 0 ' VbGeneralDate
 LongDate = 1 ' VbLongDate
 ShortDate = 2 ' VbShortDate
 LongTime = 3 ' VbLongTime
 ShortTime = 4 ' VbShortTime
End Enum

D.3.5 DateInterval Enumeration

Enum DateInterval
 Year = 0
 Quarter = 1
 Month = 2
 DayOfYear = 3
 Day = 4
 WeekOfYear = 5
 Weekday = 6
 Hour = 7
 Minute = 8
 Second = 9
End Enum

D.3.6 DueDate Enumeration

Enum DueDate
 EndOfPeriod = 0
 BegOfPeriod = 1
End Enum

D.3.7 FileAttribute Enumeration

Enum FileAttribute
 Normal = 0 ' VbNormal
 ReadOnly = 1 ' VbReadOnly
 Hidden = 2 ' VbHidden
 System = 4 ' VbSystem
 Volume = 8 ' VbVolume
 Directory = 16 ' VbDirectory
 Archive = 32 ' VbArchive
End Enum

D.3.8 FirstDayOfWeek Enumeration

Enum FirstDayOfWeek
 System = 0 ' VbUseSystemDayOfWeek
 Sunday = 1 ' VbSunday
 Monday = 2 ' VbMonday
 Tuesday = 3 ' VbTuesday
 Wednesday = 4 ' VbWednesday
 Thursday = 5 ' VbThursday

 658

 Friday = 6 ' VbFriday
 Saturday = 7 ' VbSaturday
End Enum

D.3.9 FirstWeekOfYear Enumeration

Enum FirstWeekOfYear
 System = 0 ' VbUseSystem
 Jan1 = 1 ' VbFirstJan1
 FirstFourDays = 2 ' VbFirstFourDays
 FirstFullWeek = 3 ' VbFirstFullWeek
End Enum

D.3.10 MsgBoxResult Enumeration

Enum MsgBoxResult
 OK = 1 ' vbOK
 Cancel = 2 ' vbCancel
 Abort = 3 ' vbAbort
 Retry = 4 ' vbRetry
 Ignore = 5 ' vbIgnore
 Yes = 6 ' vbYes
 No = 7 ' vbNo
End Enum

D.3.11 MsgBoxStyle Enumeration

Enum MsgBoxStyle
 DefaultButton1 = &H00000000 ' vbDefaultButton1
 ApplicationModal = &H00000000 ' vbApplicationModal
 OKOnly = &H00000000 ' vbOKOnly
 OKCancel = &H00000001 ' vbOKCancel
 AbortRetryIgnore = &H00000002 ' vbAbortRetryIgnore
 YesNoCancel = &H00000003 ' vbYesNoCancel
 YesNo = &H00000004 ' vbYesNo
 RetryCancel = &H00000005 ' vbRetryCancel
 Critical = &H00000010 ' vbCritical
 Question = &H00000020 ' vbQuestion
 Exclamation = &H00000030 ' vbExclamation
 Information = &H00000040 ' vbInformation
 DefaultButton2 = &H00000100 ' vbDefaultButton2
 DefaultButton3 = &H00000200 ' vbDefaultButton3
 SystemModal = &H00001000 ' vbSystemModal
 MsgBoxHelp = &H00004000 ' vbMsgBoxHelp
 MsgBoxSetForeground = &H00010000 ' vbMsgBoxSetForeground
 MsgBoxRight = &H00080000 ' vbMsgBoxRight
 MsgBoxRtlReading = &H00100000 ' vbMsgBoxRtlReading
End Enum

D.3.12 OpenAccess Enumeration

Enum OpenAccess
 Default = &HFFFFFFFF
 Read = 1
 Write = 2
 ReadWrite = 3
End Enum

 659

D.3.13 OpenMode Enumeration

Enum OpenMode
 Input = 1
 Output = 2
 Random = 4
 Append = 8
 Binary = 32
End Enum

D.3.14 OpenModeTypes Enumeration

Enum OpenModeTypes
 Any = &HFFFFFFFF
 Input = 1
 Output = 2
 Random = 4
 Append = 8
 Binary = 32
End Enum

D.3.15 OpenShare Enumeration

Enum OpenShare
 Default = &HFFFFFFFF
 LockReadWrite = 0
 LockWrite = 1
 LockRead = 2
 Shared = 3
End Enum

D.3.16 PrintFlags Enumeration

Enum PrintFlags
 pfNewLine = 0
 pfComma = 1
 pfSemicolon = 2
End Enum

D.3.17 TriState Enumeration

Enum TriState
 UseDefault = &HFFFFFFFE ' VbUseDefault
 False = 0 ' VbFalse
 True = 1 ' VbTrue
End Enum

D.3.18 VariantType Enumeration

Enum VariantType
 Empty = 0 ' ?
 Null = 1 ' ?
 Short = 2 ' ?
 Integer = 3 ' VbInteger
 Single = 4 ' VbSingle
 Double = 5 ' VbDouble

 660

 Currency = 6 ' VbCurrency
 Date = 7 ' VbDate
 String = 8 ' VbString
 Object = 9 ' VbObject
 Error = 10 ' VbError
 Boolean = 11 ' VbBoolean
 Variant = 12 ' VbVariant
 DataObject = 13 ' VbDataObject
 Decimal = 14 ' VbDecimal
 Byte = 17 ' VbByte
 Char = 18 ' ?
 Long = 20 ' VbLong
 UserDefinedType = 36 ' VbUserDefinedType
 Array = 8192 ' VbArray
End Enum

D.3.19 VbStrConv Enumeration

Enum VbStrConv
 None = 0 ' ?
 UpperCase = 1 ' VbUpperCase
 LowerCase = 2 ' VbLowerCase
 ProperCase = 3 ' VbProperCase
 Wide = 4 ' VbWide
 Narrow = 8 ' VbNarrow
 Katakana = 16 ' VbKatakana
 Hiragana = 32 ' VbHiragana
 SimplifiedChinese = 256 ' VbSimplifiedChinese
 TraditionalChinese = 512 ' VbTraditionalChinese
 LinguisticCasing = 1024 ' VbLinguisticCasing

End Enum

 661

Appendix E. The VB .NET Command-Line Compiler

With the release of the .NET Framework Software Development Kit (SDK), Visual Basic for the first
time features a command-line compiler that allows you to create and compile Visual Basic
components and applications apart from Visual Studio. Ironically, this means that one of VB .NET's
significant advances is the ability to use your favorite text editor, such as NotePad or WinEdit, to
create VB .NET code. This appendix details the operation of the compiler, vbc.exe.

E.1 Compiler Basics

Syntactically, the compiler is fairly typical in that it uses command-line switches to control its operation.
A command-line switch is designated by a slash or hyphen followed by a keyword. If the keyword
takes an argument, it is separated from the keyword by a colon (:). For example:

vbc sample1.vb /target:library

supplies the library keyword as an argument to create a library file (that is, a DLL). If multiple
arguments are required, they are separated from one another by commas. For example:

vbc sample1.vb /r:system.design.dll,system.messaging.dll

references the metadata in the system.design.dll and system.messaging.dll assemblies.

The minimal syntax required to compile a file named sample1.vb is:

vbc sample1.vb

This generates a console-mode application. You can specify the type of component or application you
wish to generate by using the /target switch. To generate a Windows executable, you'd enter
something like the following at the command line:

vbc sample1.vb /t:winexe /r:system.windows.forms.dll

Note the /r switch, which adds a reference to the assembly that contains the system.windows.forms
namespace. You must explicitly add references to any assemblies your application requires, other
than mscorlib.dll and microsoft.visualbasic.dll.

To compile multiple files, just list them on the command line using a space to separate them. For
example:

vbc sample1.vb sample2.vb /t:winexe /r:system.windows.forms.dll

Since sample1.vb is the first file we listed and we haven't explicitly designated an output filename, the
compiler will generate a Windows executable named sample1.exe.

E.2 Command-Line Switches

The VB .NET compiler supports the following command-line switches.

E.2.1 Output Filename and File Type

Switch Description

 662

/out:<file> Defines the output filename. If not present, the output file will have the same root
filename as the input file. <file> can be the root filename without a file extension.

/target:<type>

or:

/t:<type>

Defines the type of file to be generated by the compiler. <type> can be any of the
following keywords: exe (to create a console application), winexe (to create a
Windows application), library (to create a library assembly in a DLL), and
module (to create a .NETMODULE file that can be added to an assembly). If the
switch is not present, type defaults to exe, and the compiler attempts to create a
console application.

E.2.2 Input Files

Switch Description
/addmodule:<file> Includes the .NETMODULE file named <file> in the output file.

/libpath:<path_list>

The directory or directories to search for metadata references (which
are specified by the /reference switch) that are not found in either
the current directory or the CLR's system directory. <path_list> is a
list of directories, with multiple directories separated by commas or
semicolons. Note that /libpath is additive; using multiple switches
adds <path_list> to existing paths rather than replacing the existing
ones.

/recurse:<wildcard>

Includes all files in the current directory and its subdirectories according
to the wildcard specifications. For example:

vbc /recurse:*.vb /t:library
 /out:mylibrary.lib

If you use the /recurse switch, you do not have to name a specific file
to compile; however, if you do, it should not match the specification
provided as an argument to the /recurse switch.

/reference:<file_list>

or:

/r:<file_list>

References metadata from the assemblies contained in <file_list>.
Each filename in <file_list> must include a file extension.

E.2.3 Resources

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the output
file. <resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical
name used to load the resource, and the public and private
keywords determine whether the resource is public or private in the
assembly manifest. By default, resources are public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named <resinfo> in
the output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical

 663

name used to load the resource, and the public and private
keywords determine whether the resource is public or private in the
assembly manifest. By default, resources are public. The /resource
switch cannot be used along with the /target:module switch.

/win32icon:<file> Indicates the application icon is found in a Win32 icon (.ICO) file.
/win32resource:<file> Indicates resources are to be found in a Win32 resource (.RES) file.

E.2.4 Code Generation

Switch Description

/optimize[+|-]

Determines whether compiler output is optimized to produce smaller
binary files that offer improved efficiency and performance. Optimized
code, however, is more difficult to debug. Its default value is on (+).
/optimize is equivalent to /optimize+.

/removeintchecks[+|-
]

Removes integer overflow checks. Its default value is off (-). Turning it on
places the responsibility on the developer for insuring that integers don't
overflow their bounds. /'removeintchecks is equivalent to
/removeintchecks+.

E.2.5 Debugging

Switch Description

/debug[+-]

Determines whether debugging information is generated and included in the output
file or files. The default value is /debug-, which suppresses the generation of
debug information. /debug+ or /debug causes the compiler to generate
debugging information.

/debug:full

or:

/debug:pdbonly

Defines the form of debugging information output by the compiler. full generates
full debugging information and allows a debugger to be attached to the running
program; it is the default value if debugging is enabled. pdbonly generates a
debug symbol (PDB) file only. It supports source-code debugging when the
program is started in the debugger, but displays assembler only when the running
program is attached to the debugger.

E.2.6 Errors and Warnings

Switch Description
/nowarn Disables warnings.
/warnaserror[+|-
]

Treats warnings as errors, so that warnings prevent the code from compiling.
Its default value is off (-). /warnaserror is equivalent to /warnaserror+.

E.2.7 Language

Switch Description
/define:<symbol_list>

or:

/d:<symbol_list>

Declares global conditional compiler constants. <symbol_list> has
the form name=value, with multiple values separated by commas.

/imports:<import_list>
Globally imports namespaces, eliminating the need to define them
with individual Imports statements. <import_list> is a comma-
delimited list of namespaces.

 664

/optioncompare:binary
Specifies binary (case-sensitive) string comparison; this is the default
value. The switch does not override any explicit Option Compare
settings found in individual source-code files.

/optioncompare:text
Specifies case-insensitive string comparisons. The switch does not
override any explicit Option Compare settings found in individual
source-code files.

/optionexplicit[+|-]

Determines whether variables must be explicitly defined before they
are used; the default setting is on. The switch does not override any
explicit Option Explicit settings found in individual source-code
files. /optionexplicit is the same as /optionexplicit+.

/optionstrict[+|-]

Determines whether implicit narrowing conversions and late binding
are allowed; the default setting is off. The switch does not override any
explicit Option Strict settings found in individual source-code files.
/optionstrict is the same as /optionstrict+.

/rootnamespace:<string> Defines a root namespace for all type declarations.

E.2.8 Miscellaneous

Switch Description
/help

or:

/?

Displays help information.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet Turns on quiet output mode; the compiler displays less information about errors than it
does ordinarily.

/verbose Turns on verbose output mode; the compiler displays more information about the file being
compiled and about errors than usual.

E.2.9 Advanced

Switch Description

/baseaddress:<number>

Specifies the base address at which a library or module should be
loaded. If a single application or component uses multiple libraries, or if
modules are loaded by a single application or component, the runtime
attempts to load them at the same address and then maps them to new
addresses. In this case, performance can be improved by specifying the
base address of a project's additional libraries or modules. <number>
should be a hexadecimal address.

/bugreport:<file> Generates a file named <file> that contains information needed to
report a bug.

/delaysign[+|-]

If on (+), signs the assembly using only the public portion of the strong
name key; if off (-), the default value, generates a fully signed assembly.
The /delaysign option must be used with either /keycontainer or
/keyfile.

/keycontainer:<string>
Specifies a strong-name key container with the assembly's key pair.
The name of the container is indicated by <string>; if <string> has
embedded spaces, it should be enclosed in quotation marks.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to give an
assembly a strong name. If the filename has embedded spaces,
<file> should be enclosed in quotation marks.

 665

/main:<class>

or:

/m:<class>

Specifies the class or module (or a class that inherits from
System.Windows.Forms.Form) that contains Sub Main, which, if
present, is a program entry point for applications and components. It is
particularly useful if more than one class/module in a project has a
subroutine named Main.

/utf8output[+|-]

Emits compiler output in UTF8 character encoding, which is useful
when local settings prevent compiler output from being displayed to the
console correctly. Its default value is off (-). /utf8output is the same
as utf8output+.

E.3 Using a Response File

The Visual Basic compiler also allows you to specify command-line options and settings from a text file
or response file when you compile your program. The syntax is:

vbc @<file>

where <file> is the name of the response file, including its path if it is not located in the current
directory. The response file simply contains source filenames and compiler options; it is interpreted as
if the filenames and compiler switches were entered at the command line.

The syntax of a response file is quite simple. Multiple filenames or switches can be included on a
single line. However, a single switch, option, or filename cannot span multiple lines. In addition, #
serves as a comment symbol.

For example, a response file named mylib.rsp might appear as follows:

Build the library
/target:library
/out:mylibrary
/debug+
/debug:full
libfunc1.vb
libproc1.vb
libstrings.vb

The compiler can then be invoked by entering the following at the command line:

vbc @mylib.rsp

A response file can be combined with switches and filenames entered at the command line, and
multiple response files can be used. The compiler processes these items in the order in which they are
encountered. This means that settings in a response file can be overridden by later specifying
command-line options or that command-line settings can be overridden by later specifying a response
filename. For example, the command line:

vbc libnumeric.vb @mylib.rsp /debug-

compiles a file named libnumeric.vb, in addition to the three files already named in mylib.rsp. It also
reverses some settings in mylib.rsp by preventing debugging information from being included in the
output file.

 666

 667

Appendix F. VB 6 Language Elements Not Supported
by VB .NET

This appendix provides an alphabetical list of language elements that are present in VB 6 but are not
supported by VB .NET.

Element Description

Array function Returns a variant array whose elements contain the values passed
as arguments to the function

AscB function Returns an integer representing the character code of the first byte of
a string

Atn function Returns the arctangent of a number; replaced by the Atan method in
the System.Math class

Calendar property Determines whether a project should use the Gregorian or Hijri
calendar

CCur function Converts an expression into a Currency data type
ChrB function Returns the character corresponding to an 8-bit character code
Close statement Closes a file opened with the Open statement
CVar function Converts an expression into a Variant data type
CVDate function Returns a Date variant
CVErr function Returns an error from a procedure
Date, Date$ functions Return the current system date
Date statement Sets the current system date
Debug.Print Sends output to the Immediate window

DefBool statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Boolean

DefByte statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Byte

DefCur statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Currency

DefDate statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Date

DefDbl statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Double

DefDec statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

DefInt statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

DefObj statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

DefSng statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

DefStr statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

Eqv operator Represents a logical equivalence operator
Error function Returns a standard description of a particular error code

 668

Get statement Retrieves data from a disk file into a program variable

GoSub...Return statement Passes execution to and returns from a subroutine within a
procedure

IMEStatus function Returns the state of the Input Method Editor
Imp operator Represents a logical implication operator
Initialize event Fires when an object is first used
Input, Input$, InputB, InputB$
functions

Reads a designated number of characters from a file opened in input
or binary mode

Instancing property Defines how instances of a class are created
InStrB function Returns the position of a particular byte in a binary string
IsEmpty function Determines if a variable has been initialized
IsMissing function Determines whether an argument has been passed to a procedure
IsNull function Indicates whether an expression contains Null data
IsObject function Indicates whether a variable contains a reference to an object
LeftB, LeftB$ functions Returns the leftmost n bytes of binary data
LenB function Returns the actual size of a user-defined type in memory
Let statement Assigns the value of an expression to a variable
Load statement Loads a form or control
LoadResData function Extracts a string containing a resource included in a resource project

LoadResPicture function Assigns a graphic from a resource file to the Picture property of an
object

LoadResString function Retrieves a string from a resource file
LSet statement Copies a string to a second, left-aligned string
MidB, MidB$ functions Returns a specified number of bytes from a larger binary string
MidB statement Replaces a specified number of bytes in a binary string

MTSTransactionMode property Indicates whether a component is an MTS object and, if so,
determines its level of transaction support

Name statement Renames a disk file or directory
ObjPtr function Returns a pointer to an object

On...GoSub statement Causes program execution to jump to a subroutine based on the
value of a control variable

On...Goto statement Causes program execution to jump to a label based on the value of a
control variable

Open statement Opens a file

Option Base statement Defines the default lower bound for arrays dimensioned within a
module

Option Private Module
statement Restricts the scope and visibility of a module to the module's project

Persistable property Determines whether a class in an ActiveX DLL project can be saved
to disk

Property Set statement Declares a procedure that assigns an object reference to a property
Put statement Writes data from a program variable to a disk file
Right, Right$ functions Returns the rightmost bytes from a binary string
RSet function Copies and right-aligns a string in a string variable
Set statement Assigns an object reference to a variable
Sgn function Determines the sign of a number
Sqr function Calculates the square root of a number

String function Creates a string composed of a single character repeated a given
number of times

StrPtr function Returns a pointer to a BSTR (Visual Basic string)

 669

Terminate event Fired when an object is destroyed
Time function Returns the current system time
Time statement Sets the current system time
Type statement Defines a user-defined type

Unload statement Removes a form or a dynamically created member of a control array
from memory

Width# statement
Specifies a virtual file width when working with files opened with the
Open statement

VarPtr function Returns a pointer to a variable

 670

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of VB .NET Language in a Nutshell is a catfish. Catfish can be found all over
the world, most often in freshwater environments. Catfish are identified by their whiskers, called
"barbels," as well by as their scaleless skin; fleshy, rayless posterior fins; and sharp, defensive spines
in the dorsal and shoulder fins. Catfish have complex bones and sensitive hearing. They are
omnivorous feeders and skilled scavengers. A marine catfish can taste with any part of its body.

Though most madtom species of catfish are no more than 5 inches in length, some Danube catfish
(called wels or sheatfish) reach lengths of up to 13 feet and weights of 400 pounds. Wels catfish
(found mostly in the U.K.) are dark, flat, and black in color with white bellies. They breed in the
springtime in shallow areas near rivers and lakes. The females hatch eggs in their mouths and leave
them on plants for the males to guard. Two to three weeks later, the eggs hatch into tadpole-like fish,
which grow quickly in size. The largest recorded wels catfish was 16 feet long and weighed 675
pounds.

Catherine Morris was the production editor and Jeffrey Holcomb was the copyeditor for VB .NET
Language in a Nutshell. Mary Brady was the proofreader. Claire Cloutier, Darren Kelly, and Catherine
Morris provided quality control. Interior composition was done by Edie Shapiro and Catherine Morris.
Judy Hoer wrote the index.

Pam Spremulli designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with Quark XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Neil Walls
converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The
text and heading fonts are ITC Garamond Light and Garamond Book. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Linley Dolby.

